Abdelhadi, Ahmed
Deep Learning in Wireless Communication Receiver: A Survey
Doha, Shadman Rahman, Abdelhadi, Ahmed
The design of wireless communication receivers to enhance signal processing in complex and dynamic environments is going through a transformation by leveraging deep neural networks (DNNs). Traditional wireless receivers depend on mathematical models and algorithms, which do not have the ability to adapt or learn from data. In contrast, deep learning-based receivers are more suitable for modern wireless communication systems because they can learn from data and adapt accordingly. This survey explores various deep learning architectures such as multilayer perceptrons (MLPs), convolutional neural networks (CNNs), recurrent neural networks (RNNs), generative adversarial networks (GANs), and autoencoders, focusing on their application in the design of wireless receivers. Key modules of a receiver such as synchronization, channel estimation, equalization, space-time decoding, demodulation, decoding, interference cancellation, and modulation classification are discussed in the context of advanced wireless technologies like orthogonal frequency division multiplexing (OFDM), multiple input multiple output (MIMO), semantic communication, task-oriented communication, and next-generation (Next-G) networks. The survey not only emphasizes the potential of deep learning-based receivers in future wireless communication but also investigates different challenges of deep learning-based receivers, such as data availability, security and privacy concerns, model interpretability, computational complexity, and integration with legacy systems.
A New Dimensionality Reduction Method Based on Hensel's Compression for Privacy Protection in Federated Learning
Ouadrhiri, Ahmed El, Abdelhadi, Ahmed
Differential privacy (DP) is considered a de-facto standard for protecting users' privacy in data analysis, machine, and deep learning. Existing DP-based privacy-preserving training approaches consist of adding noise to the clients' gradients before sharing them with the server. However, implementing DP on the gradient is not efficient as the privacy leakage increases by increasing the synchronization training epochs due to the composition theorem. Recently researchers were able to recover images used in the training dataset using Generative Regression Neural Network (GRNN) even when the gradient was protected by DP. In this paper, we propose two layers of privacy protection approach to overcome the limitations of the existing DP-based approaches. The first layer reduces the dimension of the training dataset based on Hensel's Lemma. We are the first to use Hensel's Lemma for reducing the dimension (i.e., compress) of a dataset. The new dimensionality reduction method allows reducing the dimension of a dataset without losing information since Hensel's Lemma guarantees uniqueness. The second layer applies DP to the compressed dataset generated by the first layer. The proposed approach overcomes the problem of privacy leakage due to composition by applying DP only once before the training; clients train their local model on the privacy-preserving dataset generated by the second layer. Experimental results show that the proposed approach ensures strong privacy protection while achieving good accuracy. The new dimensionality reduction method achieves an accuracy of 97%, with only 25 % of the original data size.