Abdaljalil, Samir
HalluVerse25: Fine-grained Multilingual Benchmark Dataset for LLM Hallucinations
Abdaljalil, Samir, Kurban, Hasan, Serpedin, Erchin
Large Language Models (LLMs) are increasingly used in various contexts, yet remain prone to generating non-factual content, commonly referred to as "hallucinations". The literature categorizes hallucinations into several types, including entity-level, relation-level, and sentence-level hallucinations. However, existing hallucination datasets often fail to capture fine-grained hallucinations in multilingual settings. In this work, we introduce HalluVerse25, a multilingual LLM hallucination dataset that categorizes fine-grained hallucinations in English, Arabic, and Turkish. Our dataset construction pipeline uses an LLM to inject hallucinations into factual biographical sentences, followed by a rigorous human annotation process to ensure data quality. We evaluate several LLMs on HalluVerse25, providing valuable insights into how proprietary models perform in detecting LLM-generated hallucinations across different contexts.
SINdex: Semantic INconsistency Index for Hallucination Detection in LLMs
Abdaljalil, Samir, Kurban, Hasan, Sharma, Parichit, Serpedin, Erchin, Atat, Rachad
Large language models (LLMs) are increasingly deployed across diverse domains, yet they are prone to generating factually incorrect outputs - commonly known as "hallucinations." Among existing mitigation strategies, uncertainty-based methods are particularly attractive due to their ease of implementation, independence from external data, and compatibility with standard LLMs. In this work, we introduce a novel and scalable uncertainty-based semantic clustering framework for automated hallucination detection. Our approach leverages sentence embeddings and hierarchical clustering alongside a newly proposed inconsistency measure, SINdex, to yield more homogeneous clusters and more accurate detection of hallucination phenomena across various LLMs. Evaluations on prominent open- and closed-book QA datasets demonstrate that our method achieves AUROC improvements of up to 9.3% over state-of-the-art techniques. Extensive ablation studies further validate the effectiveness of each component in our framework.
ArAIEval Shared Task: Persuasion Techniques and Disinformation Detection in Arabic Text
Hasanain, Maram, Alam, Firoj, Mubarak, Hamdy, Abdaljalil, Samir, Zaghouani, Wajdi, Nakov, Preslav, Martino, Giovanni Da San, Freihat, Abed Alhakim
We present an overview of the ArAIEval shared task, organized as part of the first ArabicNLP 2023 conference co-located with EMNLP 2023. ArAIEval offers two tasks over Arabic text: (i) persuasion technique detection, focusing on identifying persuasion techniques in tweets and news articles, and (ii) disinformation detection in binary and multiclass setups over tweets. A total of 20 teams participated in the final evaluation phase, with 14 and 16 teams participating in Tasks 1 and 2, respectively. Across both tasks, we observed that fine-tuning transformer models such as AraBERT was at the core of the majority of the participating systems. We provide a description of the task setup, including a description of the dataset construction and the evaluation setup. We further give a brief overview of the participating systems. All datasets and evaluation scripts from the shared task are released to the research community. (https://araieval.gitlab.io/) We hope this will enable further research on these important tasks in Arabic.
LLMeBench: A Flexible Framework for Accelerating LLMs Benchmarking
Dalvi, Fahim, Hasanain, Maram, Boughorbel, Sabri, Mousi, Basel, Abdaljalil, Samir, Nazar, Nizi, Abdelali, Ahmed, Chowdhury, Shammur Absar, Mubarak, Hamdy, Ali, Ahmed, Hawasly, Majd, Durrani, Nadir, Alam, Firoj
The recent development and success of Large Language Models (LLMs) necessitate an evaluation of their performance across diverse NLP tasks in different languages. Although several frameworks have been developed and made publicly available, their customization capabilities for specific tasks and datasets are often complex for different users. In this study, we introduce the LLMeBench framework. Initially developed to evaluate Arabic NLP tasks using OpenAI's GPT and BLOOM models; it can be seamlessly customized for any NLP task and model, regardless of language. The framework also features zero- and few-shot learning settings. A new custom dataset can be added in less than 10 minutes, and users can use their own model API keys to evaluate the task at hand. The developed framework has been already tested on 31 unique NLP tasks using 53 publicly available datasets within 90 experimental setups, involving approximately 296K data points. We plan to open-source the framework for the community (https://github.com/qcri/LLMeBench/). A video demonstrating the framework is available online (https://youtu.be/FkQn4UjYA0s).
Detecting and Reasoning of Deleted Tweets before they are Posted
Mubarak, Hamdy, Abdaljalil, Samir, Nassar, Azza, Alam, Firoj
Social media platforms empower us in several ways, from information dissemination to consumption. While these platforms are useful in promoting citizen journalism, public awareness etc., they have misuse potentials. Malicious users use them to disseminate hate-speech, offensive content, rumor etc. to gain social and political agendas or to harm individuals, entities and organizations. Often times, general users unconsciously share information without verifying it, or unintentionally post harmful messages. Some of such content often get deleted either by the platform due to the violation of terms and policies, or users themselves for different reasons, e.g., regrets. There is a wide range of studies in characterizing, understanding and predicting deleted content. However, studies which aims to identify the fine-grained reasons (e.g., posts are offensive, hate speech or no identifiable reason) behind deleted content, are limited. In this study we address this gap, by identifying deleted tweets, particularly within the Arabic context, and labeling them with a corresponding fine-grained disinformation category. We then develop models that can predict the potentiality of tweets getting deleted, as well as the potential reasons behind deletion. Such models can help in moderating social media posts before even posting.