Abboud, Nicolas
Inline Photometrically Calibrated Hybrid Visual SLAM
Abboud, Nicolas, Sayour, Malak, Elhajj, Imad H., Zelek, John, Asmar, Daniel
This paper presents an integrated approach to Visual SLAM, merging online sequential photometric calibration within a Hybrid direct-indirect visual SLAM (H-SLAM). Photometric calibration helps normalize pixel intensity values under different lighting conditions, and thereby improves the direct component of our H-SLAM. A tangential benefit also results to the indirect component of H-SLAM given that the detected features are more stable across variable lighting conditions. Our proposed photometrically calibrated H-SLAM is tested on several datasets, including the TUM monoVO as well as on a dataset we created. Calibrated H-SLAM outperforms other state of the art direct, indirect, and hybrid Visual SLAM systems in all the experiments. Furthermore, in online SLAM tested at our site, it also significantly outperformed the other SLAM Systems.
MGSO: Monocular Real-time Photometric SLAM with Efficient 3D Gaussian Splatting
Hu, Yan Song, Abboud, Nicolas, Ali, Muhammad Qasim, Yang, Adam Srebrnjak, Elhajj, Imad, Asmar, Daniel, Chen, Yuhao, Zelek, John S.
Real-time SLAM with dense 3D mapping is computationally challenging, especially on resource-limited devices. The recent development of 3D Gaussian Splatting (3DGS) offers a promising approach for real-time dense 3D reconstruction. However, existing 3DGS-based SLAM systems struggle to balance hardware simplicity, speed, and map quality. Most systems excel in one or two of the aforementioned aspects but rarely achieve all. A key issue is the difficulty of initializing 3D Gaussians while concurrently conducting SLAM. To address these challenges, we present Monocular GSO (MGSO), a novel real-time SLAM system that integrates photometric SLAM with 3DGS. Photometric SLAM provides dense structured point clouds for 3DGS initialization, accelerating optimization and producing more efficient maps with fewer Gaussians. As a result, experiments show that our system generates reconstructions with a balance of quality, memory efficiency, and speed that outperforms the state-of-the-art. Furthermore, our system achieves all results using RGB inputs. We evaluate the Replica, TUM-RGBD, and EuRoC datasets against current live dense reconstruction systems. Not only do we surpass contemporary systems, but experiments also show that we maintain our performance on laptop hardware, making it a practical solution for robotics, A/R, and other real-time applications.