Aaronson, Scott
Testing GPT-4 with Wolfram Alpha and Code Interpreter plug-ins on math and science problems
Davis, Ernest, Aaronson, Scott
Our test sets were too small and too haphazard to support statistically valid conclusions, but they were suggestive of a number of conclusions. We summarize these here, and discuss them at greater length in section 7. Over the kinds of problems tested, GPT-4 with either plug-in is significantly stronger than GPT-4 by itself, or, almost certainly, than any AI that existed a year ago. However it is still far from reliable; it often outputs a wrong answer or fails to output any answer. In terms of overall score, we would judge that these systems performs on the level of a middling undergraduate student. However, their capacities and weaknesses do not align with a human student; the systems solve some problems that even capable students would find challenging, whereas they fail on some problems that even middling high school students would find easy.
Efficient Tomography of Non-Interacting Fermion States
Aaronson, Scott, Grewal, Sabee
There are two types of particles in the universe: bosons and fermions. Bosons include force carriers, such as photons and gluons, and fermions include matter particles like quarks and electrons. Each particle can be in a certain mode (e.g., a position or state). For a system of n particles, a configuration of the system is described by specifying how many particles are in each of m modes. Bosons are particles where multiple occupancy of a mode is allowed, whereas fermions are particles where multiple occupancy is forbidden; that is, two or more fermions cannot occupy the same mode at once (this is the Pauli exclusion principle).
Online Learning of Quantum States
Aaronson, Scott, Chen, Xinyi, Hazan, Elad, Kale, Satyen, Nayak, Ashwin
Suppose we have many copies of an unknown n-qubit state $\rho$. We measure some copies of $\rho$ using a known two-outcome measurement E_1, then other copies using a measurement E_2, and so on. At each stage t, we generate a current hypothesis $\omega_t$ about the state $\rho$, using the outcomes of the previous measurements. We show that it is possible to do this in a way that guarantees that $|\trace(E_i \omega_t) - \trace(E_i\rho)|$, the error in our prediction for the next measurement, is at least $eps$ at most $O(n / eps^2) $\ times. Even in the non-realizable setting---where there could be arbitrary noise in the measurement outcomes---we show how to output hypothesis states that incur at most $O(\sqrt {Tn}) $ excess loss over the best possible state on the first $T$ measurements. These results generalize a 2007 theorem by Aaronson on the PAC-learnability of quantum states, to the online and regret-minimization settings. We give three different ways to prove our results---using convex optimization, quantum postselection, and sequential fat-shattering dimension---which have different advantages in terms of parameters and portability.
Online Learning of Quantum States
Aaronson, Scott, Chen, Xinyi, Hazan, Elad, Kale, Satyen, Nayak, Ashwin
Suppose we have many copies of an unknown n-qubit state $\rho$. We measure some copies of $\rho$ using a known two-outcome measurement E_1, then other copies using a measurement E_2, and so on. At each stage t, we generate a current hypothesis $\omega_t$ about the state $\rho$, using the outcomes of the previous measurements. We show that it is possible to do this in a way that guarantees that $|\trace(E_i \omega_t) - \trace(E_i\rho)|$, the error in our prediction for the next measurement, is at least $eps$ at most $O(n / eps^2) $\ times. Even in the non-realizable setting---where there could be arbitrary noise in the measurement outcomes---we show how to output hypothesis states that incur at most $O(\sqrt {Tn}) $ excess loss over the best possible state on the first $T$ measurements. These results generalize a 2007 theorem by Aaronson on the PAC-learnability of quantum states, to the online and regret-minimization settings. We give three different ways to prove our results---using convex optimization, quantum postselection, and sequential fat-shattering dimension---which have different advantages in terms of parameters and portability.