Goto

Collaborating Authors

 Šulc, Milan


DocILE Benchmark for Document Information Localization and Extraction

arXiv.org Artificial Intelligence

This paper introduces the DocILE benchmark with the largest dataset of business documents for the tasks of Key Information Localization and Extraction and Line Item Recognition. It contains 6.7k annotated business documents, 100k synthetically generated documents, and nearly 1M unlabeled documents for unsupervised pre-training. The dataset has been built with knowledge of domain-and task-specific aspects, resulting in the following key features: (i) annotations in 55 classes, which surpasses the granularity of previously published key information extraction datasets by a large margin; (ii) Line Item Recognition represents a highly practical information extraction task, where key information has to be assigned to items in a table; (iii) documents come from numerous layouts and the test set includes zero-and few-shot cases as well as layouts commonly seen in the training set. The benchmark comes with several baselines, including RoBERTa, LayoutLMv3 and DETRbased Table Transformer; applied to both tasks of the DocILE benchmark, with results shared in this paper, offering a quick starting point for future work. The dataset, baselines and supplementary material are available at https://github.com/rossumai/docile. Keywords: Document AI Information Extraction Line Item Recognition Business Documents Intelligent Document Processing


DocILE 2023 Teaser: Document Information Localization and Extraction

arXiv.org Artificial Intelligence

The lack of data for information extraction (IE) from semi-structured business documents is a real problem for the IE community. Publications relying on large-scale datasets use only proprietary, unpublished data due to the sensitive nature of such documents. Publicly available datasets are mostly small and domain-specific. The absence of a large-scale public dataset or benchmark hinders the reproducibility and cross-evaluation of published methods. The DocILE 2023 competition, hosted as a lab at the CLEF 2023 conference and as an ICDAR 2023 competition, will run the first major benchmark for the tasks of Key Information Localization and Extraction (KILE) and Line Item Recognition (LIR) from business documents. With thousands of annotated real documents from open sources, a hundred thousand of generated synthetic documents, and nearly a million unlabeled documents, the DocILE lab comes with the largest publicly available dataset for KILE and LIR. We are looking forward to contributions from the Computer Vision, Natural Language Processing, Information Retrieval, and other communities. The data, baselines, code and up-to-date information about the lab and competition are available at https://docile.rossum.ai/.


GLAMI-1M: A Multilingual Image-Text Fashion Dataset

arXiv.org Artificial Intelligence

We introduce GLAMI-1M: the largest multilingual image-text classification dataset and benchmark. The dataset contains images of fashion products with item descriptions, each in 1 of 13 languages. Categorization into 191 classes has high-quality annotations: all 100k images in the test set and 75% of the 1M training set were human-labeled. The paper presents baselines for image-text classification showing that the dataset presents a challenging fine-grained classification problem: The best scoring EmbraceNet model using both visual and textual features achieves 69.7% accuracy. Experiments with a modified Imagen model show the dataset is also suitable for image generation conditioned on text. The dataset, source code and model checkpoints are published at https://github.com/glami/glami-1m