Goto

Collaborating Authors

 Łajszczak, Mateusz


BASE TTS: Lessons from building a billion-parameter Text-to-Speech model on 100K hours of data

arXiv.org Artificial Intelligence

We introduce a text-to-speech (TTS) model called BASE TTS, which stands for Big Adaptive Streamable TTS with Emergent abilities. BASE TTS is the largest TTS model to-date, trained on 100K hours of public domain speech data, achieving a new state-of-the-art in speech naturalness. It deploys a 1-billionparameter autoregressive Transformer that converts raw texts into discrete codes ("speechcodes") followed by a convolution-based decoder which converts these speechcodes into waveforms in an incremental, streamable manner. Further, our speechcodes are built using a novel speech tokenization technique that features speaker ID disentanglement and compression with byte-pair encoding. Echoing the widely-reported "emergent abilities" of large language models when trained on increasing volume of data, we show that BASE TTS variants built with 10K+ hours and 500M+ parameters begin to demonstrate natural prosody on textually complex sentences. We design and share a specialized dataset to measure these emergent abilities for text-to-speech. We showcase state-of-the-art naturalness of BASE TTS by evaluating against baselines that include publicly available large-scale text-tospeech systems: YourTTS, Bark and TortoiseTTS. Audio samples generated by the model can be heard at https://amazon-ltts-paper.com/.


Discrete Acoustic Space for an Efficient Sampling in Neural Text-To-Speech

arXiv.org Artificial Intelligence

We present a Split Vector Quantized Variational Autoencoder (SVQ-VAE) architecture using a split vector quantizer for NTTS, as an enhancement to the well-known Variational Autoencoder (VAE) and Vector Quantized Variational Autoencoder (VQ-VAE) architectures. Compared to these previous architectures, our proposed model retains the benefits of using an utterance-level bottleneck, while keeping significant representation power and a discretized latent space small enough for efficient prediction from text. We train the model on recordings in the expressive task-oriented dialogues domain and show that SVQ-VAE achieves a statistically significant improvement in naturalness over the VAE and VQ-VAE models. Furthermore, we demonstrate that the SVQ-VAE latent acoustic space is predictable from text, reducing the gap between the standard constant vector synthesis and vocoded recordings by 32%.