Goto

Collaborating Authors

 Čejka, Tomáš


Comparative Analysis of Deep Learning Models for Real-World ISP Network Traffic Forecasting

arXiv.org Artificial Intelligence

Traffic monitoring is a cornerstone of effective network management and cybersecurity, providing Internet Service Providers (ISPs) with critical insights to detect anomalies, mitigate congestion, and maintain network performance [1]. The surge in video streaming, cloud computing, and online gaming is driving rapid growth in internet usage, contributing to increasingly complex and less predictable network traffic. Efficient network monitoring allows ISPs to maintain service quality, mitigate security risks, and optimize bandwidth in real time [2]. However, real-time monitoring alone is insufficient for proactively managing network resources. To anticipate variations in demand and prevent service disruptions, ISPs increasingly adopt advanced forecasting techniques to predict traffic patterns and optimize resource allocation in advance [3]. Accurate traffic forecasting allows ISPs to efficiently allocate resources, scale network capacity, and sustain service quality under fluctuating loads [3]. The rise of diverse, high-bandwidth services has significantly increased network traffic variability. Traditional models like ARIMA and exponential smoothing, which assume linearity, struggle with ISP data due to prevalent non-linear and high-frequency fluctuations, especially during peak traffic hours [4]. These limitations have driven the adoption of deep learning models, particularly neural networks, which excel at capturing complex temporal dependencies across various forecasting domains [5].


Universal Embedding Function for Traffic Classification via QUIC Domain Recognition Pretraining: A Transfer Learning Success

arXiv.org Artificial Intelligence

Encrypted traffic classification (TC) methods must adapt to new protocols and extensions as well as to advancements in other machine learning fields. In this paper, we follow a transfer learning setup best known from computer vision. We first pretrain an embedding model on a complex task with a large number of classes and then transfer it to five well-known TC datasets. The pretraining task is recognition of SNI domains in encrypted QUIC traffic, which in itself is a problem for network monitoring due to the growing adoption of TLS Encrypted Client Hello. Our training pipeline -- featuring a disjoint class setup, ArcFace loss function, and a modern deep learning architecture -- aims to produce universal embeddings applicable across tasks. The proposed solution, based on nearest neighbors search in the embedding space, surpasses SOTA performance on four of the five TC datasets. A comparison with a baseline method utilizing raw packet sequences revealed unexpected findings with potential implications for the broader TC field. We published the model architecture, trained weights, and transfer learning experiments.


NetTiSA: Extended IP Flow with Time-series Features for Universal Bandwidth-constrained High-speed Network Traffic Classification

arXiv.org Artificial Intelligence

Network traffic monitoring based on IP Flows is a standard monitoring approach that can be deployed to various network infrastructures, even the large IPS-based networks connecting millions of people. Since flow records traditionally contain only limited information (addresses, transport ports, and amount of exchanged data), they are also commonly extended for additional features that enable network traffic analysis with high accuracy. Nevertheless, the flow extensions are often too large or hard to compute, which limits their deployment only to smaller-sized networks. This paper proposes a novel extended IP flow called NetTiSA (Network Time Series Analysed), which is based on the analysis of the time series of packet sizes. By thoroughly testing 25 different network classification tasks, we show the broad applicability and high usability of NetTiSA, which often outperforms the best-performing related works. For practical deployment, we also consider the sizes of flows extended for NetTiSA and evaluate the performance impacts of its computation in the flow exporter. The novel feature set proved universal and deployable to high-speed ISP networks with 100\,Gbps lines; thus, it enables accurate and widespread network security protection.


Network Traffic Classification based on Single Flow Time Series Analysis

arXiv.org Artificial Intelligence

Network traffic monitoring using IP flows is used to handle the current challenge of analyzing encrypted network communication. Nevertheless, the packet aggregation into flow records naturally causes information loss; therefore, this paper proposes a novel flow extension for traffic features based on the time series analysis of the Single Flow Time series, i.e., a time series created by the number of bytes in each packet and its timestamp. We propose 69 universal features based on the statistical analysis of data points, time domain analysis, packet distribution within the flow timespan, time series behavior, and frequency domain analysis. We have demonstrated the usability and universality of the proposed feature vector for various network traffic classification tasks using 15 well-known publicly available datasets. Our evaluation shows that the novel feature vector achieves classification performance similar or better than related works on both binary and multiclass classification tasks. In more than half of the evaluated tasks, the classification performance increased by up to 5\%.


Fine-grained TLS services classification with reject option

arXiv.org Artificial Intelligence

The recent success and proliferation of machine learning and deep learning have provided powerful tools, which are also utilized for encrypted traffic analysis, classification, and threat detection in computer networks. These methods, neural networks in particular, are often complex and require a huge corpus of training data. Therefore, this paper focuses on collecting a large up-to-date dataset with almost 200 fine-grained service labels and 140 million network flows extended with packet-level metadata. The number of flows is three orders of magnitude higher than in other existing public labeled datasets of encrypted traffic. The number of service labels, which is important to make the problem hard and realistic, is four times higher than in the public dataset with the most class labels. The published dataset is intended as a benchmark for identifying services in encrypted traffic. Service identification can be further extended with the task of "rejecting" unknown services, i.e., the traffic not seen during the training phase. Neural networks offer superior performance for tackling this more challenging problem. To showcase the dataset's usefulness, we implemented a neural network with a multi-modal architecture, which is the state-of-the-art approach, and achieved 97.04% classification accuracy and detected 91.94% of unknown services with 5% false positive rate.