Goto

Collaborating Authors

 Ögren, Petter


BVR Gym: A Reinforcement Learning Environment for Beyond-Visual-Range Air Combat

arXiv.org Artificial Intelligence

Creating new air combat tactics and discovering novel maneuvers can require numerous hours of expert pilots' time. Additionally, for each different combat scenario, the same strategies may not work since small changes in equipment performance may drastically change the air combat outcome. For this reason, we created a reinforcement learning environment to help investigate potential air combat tactics in the field of beyond-visual-range (BVR) air combat: the BVR Gym. This type of air combat is important since long-range missiles are often the first weapon to be used in aerial combat. Some existing environments provide high-fidelity simulations but are either not open source or are not adapted to the BVR air combat domain. Other environments are open source but use less accurate simulation models. Our work provides a high-fidelity environment based on the open-source flight dynamics simulator JSBSim and is adapted to the BVR air combat domain. This article describes the building blocks of the environment and some use cases.


Deep Learning Based Situation Awareness for Multiple Missiles Evasion

arXiv.org Artificial Intelligence

As the effective range of air-to-air missiles increases, it becomes harder for human operators to maintain the situational awareness needed to keep a UAV safe. In this work, we propose a decision support tool to help UAV operators in Beyond Visual Range (BVR) air combat scenarios assess the risks of different options and make decisions based on those. Earlier work focused on the threat posed by a single missile, and in this work, we extend the ideas to several missile threats. The proposed method uses Deep Neural Networks (DNN) to learn from high-fidelity simulations to provide the operator with an outcome estimate for a set of different strategies. Our results demonstrate that the proposed system can manage multiple incoming missiles, evaluate a family of options, and recommend the least risky course of action.


An Extended Convergence Result for Behaviour Tree Controllers

arXiv.org Artificial Intelligence

Behavior trees (BTs) are an optimally modular framework to assemble hierarchical hybrid control policies from a set of low-level control policies using a tree structure. Many robotic tasks are naturally decomposed into a hierarchy of control tasks, and modularity is a well-known tool for handling complexity, therefor behavior trees have garnered widespread usage in the robotics community. In this paper, we study the convergence of BTs, in the sense of reaching a desired part of the state space. Earlier results on BT convergence were often tailored to specific families of BTs, created using different design principles. The results of this paper generalize the earlier results and also include new cases of cyclic switching not covered in the literature.


Improving the performance of Learned Controllers in Behavior Trees using Value Function Estimates at Switching Boundaries

arXiv.org Artificial Intelligence

Behavior trees represent a modular way to create an overall controller from a set of sub-controllers solving different sub-problems. These sub-controllers can be created in different ways, such as classical model based control or reinforcement learning (RL). If each sub-controller satisfies the preconditions of the next sub-controller, the overall controller will achieve the overall goal. However, even if all sub-controllers are locally optimal in achieving the preconditions of the next, with respect to some performance metric such as completion time, the overall controller might be far from optimal with respect to the same performance metric. In this paper we show how the performance of the overall controller can be improved if we use approximations of value functions to inform the design of a sub-controller of the needs of the next one. We also show how, under certain assumptions, this leads to a globally optimal controller when the process is executed on all sub-controllers. Finally, this result also holds when some of the sub-controllers are already given, i.e., if we are constrained to use some existing sub-controllers the overall controller will be globally optimal given this constraint.


Continuous-Time Behavior Trees as Discontinuous Dynamical Systems

arXiv.org Artificial Intelligence

Behavior trees represent a hierarchical and modular way of combining several low-level control policies into a high-level task-switching policy. Hybrid dynamical systems can also be seen in terms of task switching between different policies, and therefore several comparisons between behavior trees and hybrid dynamical systems have been made, but only informally, and only in discrete time. A formal continuous-time formulation of behavior trees has been lacking. Additionally, convergence analyses of specific classes of behavior tree designs have been made, but not for general designs. In this letter, we provide the first continuous-time formulation of behavior trees, show that they can be seen as discontinuous dynamical systems (a subclass of hybrid dynamical systems), which enables the application of existence and uniqueness results to behavior trees, and finally, provide sufficient conditions under which such systems will converge to a desired region of the state space for general designs. With these results, a large body of results on continuous-time dynamical systems can be brought to use when designing behavior tree controllers.


A Survey of Behavior Trees in Robotics and AI

arXiv.org Artificial Intelligence

Behavior Trees (BTs) were invented as a tool to enable modular AI in computer games, but have received an increasing amount of attention in the robotics community in the last decade. With rising demands on agent AI complexity, game programmers found that the Finite State Machines (FSM) that they used scaled poorly and were difficult to extend, adapt and reuse. In BTs, the state transition logic is not dispersed across the individual states, but organized in a hierarchical tree structure, with the states as leaves. This has a significant effect on modularity, which in turn simplifies both synthesis and analysis by humans and algorithms alike. These advantages are needed not only in game AI design, but also in robotics, as is evident from the research being done. In this paper we present a comprehensive survey of the topic of BTs in Artificial Intelligence and Robotic applications. The existing literature is described and categorized based on methods, application areas and contributions, and the paper is concluded with a list of open research challenges.


Improving the Modularity of AUV Control Systems using Behaviour Trees

arXiv.org Artificial Intelligence

In this paper, we show how behaviour trees (BTs) can be used to design modular, versatile, and robust control architectures for mission-critical systems. In particular, we show this in the context of autonomous underwater vehicles (AUVs). Robustness, in terms of system safety, is important since manual recovery of AUVs is often extremely difficult. Further more, versatility is important to be able to execute many different kinds of missions. Finally, modularity is needed to achieve a combination of robustness and versatility, as the complexity of a versatile systems needs to be encapsulated in modules, in order to create a simple overall structure enabling robustness analysis. The proposed design is illustrated using a typical AUV mission.


Adding Neural Network Controllers to Behavior Trees without Destroying Performance Guarantees

arXiv.org Artificial Intelligence

In this paper, we show how controllers created using data driven designs, such as neural networks, can be used together with model based controllers in a way that combines the performance guarantees of the model based controllers with the efficiency of the data driven controllers. The considered performance guarantees include both safety, in terms of avoiding designated unsafe parts of the state space, and convergence, in terms of reaching a given beneficial part of the state space. Using the framework Behavior Trees, we are able to show how this can be done on the top level, concerning just two controllers, as described above, but also note that the same approach can be used in arbitrary sub-trees. The price for introducing the new controller is that the upper bound on the time needed to reach the desired part of the state space increases. The approach is illustrated with an inverted pendulum example.


3D Pursuit-Evasion for AUVs

arXiv.org Artificial Intelligence

Abstract-- In this paper, we consider the problem of pursuit-evasion using multiple Autonomous Underwater Vehicles (AUVs) in a 3D water volume, with and without simple obstacles. Pursuit-evasion is a well studied topic in robotics, but the results are mostly set in 2D environments, using unlimited line of sight sensing. We propose an algorithm for range limited sensing in 3D environments that captures a finite speed evader based on one single previous observation of its location. The pursuers are first moved to form a maximal cage formation, based on their number and sensor ranges, containing all of the possible evader locations. The cage is then shrunk until every part of that volume is sensed, thereby capturing the evader. The pursuers need only limited sensing range and low bandwidth communication, making the algorithm well suited for an underwater environment. I. INTRODUCTION Pursuit-evasion is a game played between two opposing sides, the pursuer(s) and evader(s).


Behavior Trees in Robotics and AI: An Introduction

arXiv.org Artificial Intelligence

A Behavior Tree (BT) is a way to structure the switching between different tasks in an autonomous agent, such as a robot or a virtual entity in a computer game. BTs are a very efficient way of creating complex systems that are both modular and reactive. These properties are crucial in many applications, which has led to the spread of BT from computer game programming to many branches of AI and Robotics. In this book, we will first give an introduction to BTs, then we describe how BTs relate to, and in many cases generalize, earlier switching structures. These ideas are then used as a foundation for a set of efficient and easy to use design principles. Properties such as safety, robustness, and efficiency are important for an autonomous system, and we describe a set of tools for formally analyzing these using a state space description of BTs. With the new analysis tools, we can formalize the descriptions of how BTs generalize earlier approaches. We also show the use of BTs in automated planning and machine learning. Finally, we describe an extended set of tools to capture the behavior of Stochastic BTs, where the outcomes of actions are described by probabilities. These tools enable the computation of both success probabilities and time to completion.