:, null
Every Sample Matters: Leveraging Mixture-of-Experts and High-Quality Data for Efficient and Accurate Code LLM
Codefuse, null, Team, Ling, :, null, Cai, Wenting, Cao, Yuchen, Chen, Chaoyu, Chen, Chen, Chen, Siba, Cui, Qing, Di, Peng, Fang, Junpeng, Gong, Zi, Guo, Ting, He, Zhengyu, Huang, Yang, Li, Cong, Li, Jianguo, Li, Zheng, Lian, Shijie, Liu, BingChang, Luo, Songshan, Mao, Shuo, Shen, Min, Wu, Jian, Yang, Jiaolong, Yang, Wenjie, Ye, Tong, Yu, Hang, Zhang, Wei, Zhang, Zhenduo, Zhao, Hailin, Zheng, Xunjin, Zhou, Jun
Recent advancements in code large language models (LLMs) have demonstrated remarkable capabilities in code generation and understanding. It is still challenging to build a code LLM with comprehensive performance yet ultimate efficiency. Many attempts have been released in the open source community to break the trade-off between performance and efficiency, such as the Qwen Coder series and the DeepSeek Coder series. This paper introduces yet another attempt in this area, namely Ling-Coder-Lite. We leverage the efficient Mixture-of-Experts (MoE) architecture along with a set of high-quality data curation methods (especially those based on program analytics) to build an efficient yet powerful code LLM. Ling-Coder-Lite exhibits on-par performance on 12 representative coding benchmarks compared to state-of-the-art models of similar size, such as Qwen2.5-Coder-7B and DeepSeek-Coder-V2-Lite, while offering competitive latency and throughput. In practice, we achieve a 50\% reduction in deployment resources compared to the similar-sized dense model without performance loss. To facilitate further research and development in this area, we open-source our models as well as a substantial portion of high-quality data for the annealing and post-training stages. The models and data can be accessed at~\url{https://huggingface.co/inclusionAI/Ling-Coder-lite}.
Cosmos-Reason1: From Physical Common Sense To Embodied Reasoning
NVIDIA, null, :, null, Azzolini, Alisson, Brandon, Hannah, Chattopadhyay, Prithvijit, Chen, Huayu, Chu, Jinju, Cui, Yin, Diamond, Jenna, Ding, Yifan, Ferroni, Francesco, Govindaraju, Rama, Gu, Jinwei, Gururani, Siddharth, Hanafi, Imad El, Hao, Zekun, Huffman, Jacob, Jin, Jingyi, Johnson, Brendan, Khan, Rizwan, Kurian, George, Lantz, Elena, Lee, Nayeon, Li, Zhaoshuo, Li, Xuan, Lin, Tsung-Yi, Lin, Yen-Chen, Liu, Ming-Yu, Mathau, Andrew, Ni, Yun, Pavao, Lindsey, Ping, Wei, Romero, David W., Smelyanskiy, Misha, Song, Shuran, Tchapmi, Lyne, Wang, Andrew Z., Wang, Boxin, Wang, Haoxiang, Wei, Fangyin, Xu, Jiashu, Xu, Yao, Yang, Xiaodong, Yang, Zhuolin, Zeng, Xiaohui, Zhang, Zhe
Physical AI systems need to perceive, understand, and perform complex actions in the physical world. In this paper, we present the Cosmos-Reason1 models that can understand the physical world and generate appropriate embodied decisions (e.g., next step action) in natural language through long chain-of-thought reasoning processes. We begin by defining key capabilities for Physical AI reasoning, with a focus on physical common sense and embodied reasoning. To represent physical common sense, we use a hierarchical ontology that captures fundamental knowledge about space, time, and physics. For embodied reasoning, we rely on a two-dimensional ontology that generalizes across different physical embodiments. Building on these capabilities, we develop two multimodal large language models, Cosmos-Reason1-8B and Cosmos-Reason1-56B. We curate data and train our models in four stages: vision pre-training, general supervised fine-tuning (SFT), Physical AI SFT, and Physical AI reinforcement learning (RL) as the post-training. To evaluate our models, we build comprehensive benchmarks for physical common sense and embodied reasoning according to our ontologies. Evaluation results show that Physical AI SFT and reinforcement learning bring significant improvements.
Cosmos-Transfer1: Conditional World Generation with Adaptive Multimodal Control
NVIDIA, null, :, null, Alhaija, Hassan Abu, Alvarez, Jose, Bala, Maciej, Cai, Tiffany, Cao, Tianshi, Cha, Liz, Chen, Joshua, Chen, Mike, Ferroni, Francesco, Fidler, Sanja, Fox, Dieter, Ge, Yunhao, Gu, Jinwei, Hassani, Ali, Isaev, Michael, Jannaty, Pooya, Lan, Shiyi, Lasser, Tobias, Ling, Huan, Liu, Ming-Yu, Liu, Xian, Lu, Yifan, Luo, Alice, Ma, Qianli, Mao, Hanzi, Ramos, Fabio, Ren, Xuanchi, Shen, Tianchang, Tang, Shitao, Wang, Ting-Chun, Wu, Jay, Xu, Jiashu, Xu, Stella, Xie, Kevin, Ye, Yuchong, Yang, Xiaodong, Zeng, Xiaohui, Zeng, Yu
We introduce Cosmos-Transfer1, a conditional world generation model that can generate world simulations based on multiple spatial control inputs of various modalities such as segmentation, depth, and edge. In the design, the spatial conditional scheme is adaptive and customizable. It allows weighting different conditional inputs differently at different spatial locations. This enables highly controllable world generation and finds use in various world-to-world transfer use cases, including Sim2Real. We conduct extensive evaluations to analyze the proposed model and demonstrate its applications for Physical AI, including robotics Sim2Real and autonomous vehicle data enrichment. We further demonstrate an inference scaling strategy to achieve real-time world generation with an NVIDIA GB200 NVL72 rack.
Phi-4-Mini Technical Report: Compact yet Powerful Multimodal Language Models via Mixture-of-LoRAs
Microsoft, null, :, null, Abouelenin, Abdelrahman, Ashfaq, Atabak, Atkinson, Adam, Awadalla, Hany, Bach, Nguyen, Bao, Jianmin, Benhaim, Alon, Cai, Martin, Chaudhary, Vishrav, Chen, Congcong, Chen, Dong, Chen, Dongdong, Chen, Junkun, Chen, Weizhu, Chen, Yen-Chun, Chen, Yi-ling, Dai, Qi, Dai, Xiyang, Fan, Ruchao, Gao, Mei, Gao, Min, Garg, Amit, Goswami, Abhishek, Hao, Junheng, Hendy, Amr, Hu, Yuxuan, Jin, Xin, Khademi, Mahmoud, Kim, Dongwoo, Kim, Young Jin, Lee, Gina, Li, Jinyu, Li, Yunsheng, Liang, Chen, Lin, Xihui, Lin, Zeqi, Liu, Mengchen, Liu, Yang, Lopez, Gilsinia, Luo, Chong, Madan, Piyush, Mazalov, Vadim, Mitra, Arindam, Mousavi, Ali, Nguyen, Anh, Pan, Jing, Perez-Becker, Daniel, Platin, Jacob, Portet, Thomas, Qiu, Kai, Ren, Bo, Ren, Liliang, Roy, Sambuddha, Shang, Ning, Shen, Yelong, Singhal, Saksham, Som, Subhojit, Song, Xia, Sych, Tetyana, Vaddamanu, Praneetha, Wang, Shuohang, Wang, Yiming, Wang, Zhenghao, Wu, Haibin, Xu, Haoran, Xu, Weijian, Yang, Yifan, Yang, Ziyi, Yu, Donghan, Zabir, Ishmam, Zhang, Jianwen, Zhang, Li Lyna, Zhang, Yunan, Zhou, Xiren
We introduce Phi-4-Mini and Phi-4-Multimodal, compact yet highly capable language and multimodal models. Phi-4-Mini is a 3.8-billion-parameter language model trained on high-quality web and synthetic data, significantly outperforming recent open-source models of similar size and matching the performance of models twice its size on math and coding tasks requiring complex reasoning. This achievement is driven by a carefully curated synthetic data recipe emphasizing high-quality math and coding datasets. Compared to its predecessor, Phi-3.5-Mini, Phi-4-Mini features an expanded vocabulary size of 200K tokens to better support multilingual applications, as well as group query attention for more efficient long-sequence generation. Phi-4-Multimodal is a multimodal model that integrates text, vision, and speech/audio input modalities into a single model. Its novel modality extension approach leverages LoRA adapters and modality-specific routers to allow multiple inference modes combining various modalities without interference. For example, it now ranks first in the OpenASR leaderboard to date, although the LoRA component of the speech/audio modality has just 460 million parameters. Phi-4-Multimodal supports scenarios involving (vision + language), (vision + speech), and (speech/audio) inputs, outperforming larger vision-language and speech-language models on a wide range of tasks. Additionally, we experiment to further train Phi-4-Mini to enhance its reasoning capabilities. Despite its compact 3.8-billion-parameter size, this experimental version achieves reasoning performance on par with or surpassing significantly larger models, including DeepSeek-R1-Distill-Qwen-7B and DeepSeek-R1-Distill-Llama-8B.
The Breeze 2 Herd of Models: Traditional Chinese LLMs Based on Llama with Vision-Aware and Function-Calling Capabilities
Research, MediaTek, :, null, Hsu, Chan-Jan, Liu, Chia-Sheng, Chen, Meng-Hsi, Chen, Muxi, Hsu, Po-Chun, Chen, Yi-Chang, Shiu, Da-Shan
Llama-Breeze2 (hereinafter referred to as Breeze2) is a suite of advanced multi-modal language models, available in 3B and 8B parameter configurations, specifically designed to enhance Traditional Chinese language representation. Building upon the Llama 3.2 model family, we continue the pre-training of Breeze2 on an extensive corpus to enhance the linguistic and cultural heritage of Traditional Chinese. In addition to language modeling capabilities, we significantly augment the models with function calling and vision understanding capabilities. At the time of this publication, as far as we are aware, absent reasoning-inducing prompts, Breeze2 are the strongest performing models in Traditional Chinese function calling and image understanding in its size class. The effectiveness of Breeze2 is benchmarked across various tasks, including Taiwan general knowledge, instruction-following, long context, function calling, and vision understanding. We are publicly releasing all Breeze2 models under the Llama 3.2 Community License. We also showcase the capabilities of the model running on mobile platform with a mobile application which we also open source.
Competitive Programming with Large Reasoning Models
OpenAI, null, :, null, El-Kishky, Ahmed, Wei, Alexander, Saraiva, Andre, Minaev, Borys, Selsam, Daniel, Dohan, David, Song, Francis, Lightman, Hunter, Clavera, Ignasi, Pachocki, Jakub, Tworek, Jerry, Kuhn, Lorenz, Kaiser, Lukasz, Chen, Mark, Schwarzer, Max, Rohaninejad, Mostafa, McAleese, Nat, contributors, o3, Mรผrk, Oleg, Garg, Rhythm, Shu, Rui, Sidor, Szymon, Kosaraju, Vineet, Zhou, Wenda
We show that reinforcement learning applied to large language models (LLMs) significantly boosts performance on complex coding and reasoning tasks. Additionally, we compare two general-purpose reasoning models - OpenAI o1 and an early checkpoint of o3 - with a domain-specific system, o1-ioi, which uses hand-engineered inference strategies designed for competing in the 2024 International Olympiad in Informatics (IOI). We competed live at IOI 2024 with o1-ioi and, using hand-crafted test-time strategies, placed in the 49th percentile. Under relaxed competition constraints, o1-ioi achieved a gold medal. However, when evaluating later models such as o3, we find that o3 achieves gold without hand-crafted domain-specific strategies or relaxed constraints. Our findings show that although specialized pipelines such as o1-ioi yield solid improvements, the scaled-up, general-purpose o3 model surpasses those results without relying on hand-crafted inference heuristics. Notably, o3 achieves a gold medal at the 2024 IOI and obtains a Codeforces rating on par with elite human competitors. Overall, these results indicate that scaling general-purpose reinforcement learning, rather than relying on domain-specific techniques, offers a robust path toward state-of-the-art AI in reasoning domains, such as competitive programming.
Cosmos World Foundation Model Platform for Physical AI
NVIDIA, null, :, null, Agarwal, Niket, Ali, Arslan, Bala, Maciej, Balaji, Yogesh, Barker, Erik, Cai, Tiffany, Chattopadhyay, Prithvijit, Chen, Yongxin, Cui, Yin, Ding, Yifan, Dworakowski, Daniel, Fan, Jiaojiao, Fenzi, Michele, Ferroni, Francesco, Fidler, Sanja, Fox, Dieter, Ge, Songwei, Ge, Yunhao, Gu, Jinwei, Gururani, Siddharth, He, Ethan, Huang, Jiahui, Huffman, Jacob, Jannaty, Pooya, Jin, Jingyi, Kim, Seung Wook, Klรกr, Gergely, Lam, Grace, Lan, Shiyi, Leal-Taixe, Laura, Li, Anqi, Li, Zhaoshuo, Lin, Chen-Hsuan, Lin, Tsung-Yi, Ling, Huan, Liu, Ming-Yu, Liu, Xian, Luo, Alice, Ma, Qianli, Mao, Hanzi, Mo, Kaichun, Mousavian, Arsalan, Nah, Seungjun, Niverty, Sriharsha, Page, David, Paschalidou, Despoina, Patel, Zeeshan, Pavao, Lindsey, Ramezanali, Morteza, Reda, Fitsum, Ren, Xiaowei, Sabavat, Vasanth Rao Naik, Schmerling, Ed, Shi, Stella, Stefaniak, Bartosz, Tang, Shitao, Tchapmi, Lyne, Tredak, Przemek, Tseng, Wei-Cheng, Varghese, Jibin, Wang, Hao, Wang, Haoxiang, Wang, Heng, Wang, Ting-Chun, Wei, Fangyin, Wei, Xinyue, Wu, Jay Zhangjie, Xu, Jiashu, Yang, Wei, Yen-Chen, Lin, Zeng, Xiaohui, Zeng, Yu, Zhang, Jing, Zhang, Qinsheng, Zhang, Yuxuan, Zhao, Qingqing, Zolkowski, Artur
Physical AI needs to be trained digitally first. It needs a digital twin of itself, the policy model, and a digital twin of the world, the world model. In this paper, we present the Cosmos World Foundation Model Platform to help developers build customized world models for their Physical AI setups. We position a world foundation model as a general-purpose world model that can be fine-tuned into customized world models for downstream applications. Our platform covers a video curation pipeline, pre-trained world foundation models, examples of post-training of pre-trained world foundation models, and video tokenizers. To help Physical AI builders solve the most critical problems of our society, we make our platform open-source and our models open-weight with permissive licenses available via https://github.com/NVIDIA/Cosmos.
Qwen2.5 Technical Report
Qwen, null, :, null, Yang, An, Yang, Baosong, Zhang, Beichen, Hui, Binyuan, Zheng, Bo, Yu, Bowen, Li, Chengyuan, Liu, Dayiheng, Huang, Fei, Wei, Haoran, Lin, Huan, Yang, Jian, Tu, Jianhong, Zhang, Jianwei, Yang, Jianxin, Yang, Jiaxi, Zhou, Jingren, Lin, Junyang, Dang, Kai, Lu, Keming, Bao, Keqin, Yang, Kexin, Yu, Le, Li, Mei, Xue, Mingfeng, Zhang, Pei, Zhu, Qin, Men, Rui, Lin, Runji, Li, Tianhao, Tang, Tianyi, Xia, Tingyu, Ren, Xingzhang, Ren, Xuancheng, Fan, Yang, Su, Yang, Zhang, Yichang, Wan, Yu, Liu, Yuqiong, Cui, Zeyu, Zhang, Zhenru, Qiu, Zihan
In this report, we introduce Qwen2.5, a comprehensive series of large language models (LLMs) designed to meet diverse needs. Compared to previous iterations, Qwen 2.5 has been significantly improved during both the pre-training and post-training stages. In terms of pre-training, we have scaled the high-quality pre-training datasets from the previous 7 trillion tokens to 18 trillion tokens. This provides a strong foundation for common sense, expert knowledge, and reasoning capabilities. In terms of post-training, we implement intricate supervised finetuning with over 1 million samples, as well as multistage reinforcement learning. Post-training techniques enhance human preference, and notably improve long text generation, structural data analysis, and instruction following. To handle diverse and varied use cases effectively, we present Qwen2.5 LLM series in rich sizes. Open-weight offerings include base and instruction-tuned models, with quantized versions available. In addition, for hosted solutions, the proprietary models currently include two mixture-of-experts (MoE) variants: Qwen2.5-Turbo and Qwen2.5-Plus, both available from Alibaba Cloud Model Studio. Qwen2.5 has demonstrated top-tier performance on a wide range of benchmarks evaluating language understanding, reasoning, mathematics, coding, human preference alignment, etc. Specifically, the open-weight flagship Qwen2.5-72B-Instruct outperforms a number of open and proprietary models and demonstrates competitive performance to the state-of-the-art open-weight model, Llama-3-405B-Instruct, which is around 5 times larger. Qwen2.5-Turbo and Qwen2.5-Plus offer superior cost-effectiveness while performing competitively against GPT-4o-mini and GPT-4o respectively. Additionally, as the foundation, Qwen2.5 models have been instrumental in training specialized models such as Qwen2.5-Math, Qwen2.5-Coder, QwQ, and multimodal models.
OpenAI o1 System Card
OpenAI, null, :, null, Jaech, Aaron, Kalai, Adam, Lerer, Adam, Richardson, Adam, El-Kishky, Ahmed, Low, Aiden, Helyar, Alec, Madry, Aleksander, Beutel, Alex, Carney, Alex, Iftimie, Alex, Karpenko, Alex, Passos, Alex Tachard, Neitz, Alexander, Prokofiev, Alexander, Wei, Alexander, Tam, Allison, Bennett, Ally, Kumar, Ananya, Saraiva, Andre, Vallone, Andrea, Duberstein, Andrew, Kondrich, Andrew, Mishchenko, Andrey, Applebaum, Andy, Jiang, Angela, Nair, Ashvin, Zoph, Barret, Ghorbani, Behrooz, Rossen, Ben, Sokolowsky, Benjamin, Barak, Boaz, McGrew, Bob, Minaiev, Borys, Hao, Botao, Baker, Bowen, Houghton, Brandon, McKinzie, Brandon, Eastman, Brydon, Lugaresi, Camillo, Bassin, Cary, Hudson, Cary, Li, Chak Ming, de Bourcy, Charles, Voss, Chelsea, Shen, Chen, Zhang, Chong, Koch, Chris, Orsinger, Chris, Hesse, Christopher, Fischer, Claudia, Chan, Clive, Roberts, Dan, Kappler, Daniel, Levy, Daniel, Selsam, Daniel, Dohan, David, Farhi, David, Mely, David, Robinson, David, Tsipras, Dimitris, Li, Doug, Oprica, Dragos, Freeman, Eben, Zhang, Eddie, Wong, Edmund, Proehl, Elizabeth, Cheung, Enoch, Mitchell, Eric, Wallace, Eric, Ritter, Erik, Mays, Evan, Wang, Fan, Such, Felipe Petroski, Raso, Filippo, Leoni, Florencia, Tsimpourlas, Foivos, Song, Francis, von Lohmann, Fred, Sulit, Freddie, Salmon, Geoff, Parascandolo, Giambattista, Chabot, Gildas, Zhao, Grace, Brockman, Greg, Leclerc, Guillaume, Salman, Hadi, Bao, Haiming, Sheng, Hao, Andrin, Hart, Bagherinezhad, Hessam, Ren, Hongyu, Lightman, Hunter, Chung, Hyung Won, Kivlichan, Ian, O'Connell, Ian, Osband, Ian, Gilaberte, Ignasi Clavera, Akkaya, Ilge, Kostrikov, Ilya, Sutskever, Ilya, Kofman, Irina, Pachocki, Jakub, Lennon, James, Wei, Jason, Harb, Jean, Twore, Jerry, Feng, Jiacheng, Yu, Jiahui, Weng, Jiayi, Tang, Jie, Yu, Jieqi, Candela, Joaquin Quiรฑonero, Palermo, Joe, Parish, Joel, Heidecke, Johannes, Hallman, John, Rizzo, John, Gordon, Jonathan, Uesato, Jonathan, Ward, Jonathan, Huizinga, Joost, Wang, Julie, Chen, Kai, Xiao, Kai, Singhal, Karan, Nguyen, Karina, Cobbe, Karl, Shi, Katy, Wood, Kayla, Rimbach, Kendra, Gu-Lemberg, Keren, Liu, Kevin, Lu, Kevin, Stone, Kevin, Yu, Kevin, Ahmad, Lama, Yang, Lauren, Liu, Leo, Maksin, Leon, Ho, Leyton, Fedus, Liam, Weng, Lilian, Li, Linden, McCallum, Lindsay, Held, Lindsey, Kuhn, Lorenz, Kondraciuk, Lukas, Kaiser, Lukasz, Metz, Luke, Boyd, Madelaine, Trebacz, Maja, Joglekar, Manas, Chen, Mark, Tintor, Marko, Meyer, Mason, Jones, Matt, Kaufer, Matt, Schwarzer, Max, Shah, Meghan, Yatbaz, Mehmet, Guan, Melody Y., Xu, Mengyuan, Yan, Mengyuan, Glaese, Mia, Chen, Mianna, Lampe, Michael, Malek, Michael, Wang, Michele, Fradin, Michelle, McClay, Mike, Pavlov, Mikhail, Wang, Miles, Wang, Mingxuan, Murati, Mira, Bavarian, Mo, Rohaninejad, Mostafa, McAleese, Nat, Chowdhury, Neil, Chowdhury, Neil, Ryder, Nick, Tezak, Nikolas, Brown, Noam, Nachum, Ofir, Boiko, Oleg, Murk, Oleg, Watkins, Olivia, Chao, Patrick, Ashbourne, Paul, Izmailov, Pavel, Zhokhov, Peter, Dias, Rachel, Arora, Rahul, Lin, Randall, Lopes, Rapha Gontijo, Gaon, Raz, Miyara, Reah, Leike, Reimar, Hwang, Renny, Garg, Rhythm, Brown, Robin, James, Roshan, Shu, Rui, Cheu, Ryan, Greene, Ryan, Jain, Saachi, Altman, Sam, Toizer, Sam, Toyer, Sam, Miserendino, Samuel, Agarwal, Sandhini, Hernandez, Santiago, Baker, Sasha, McKinney, Scott, Yan, Scottie, Zhao, Shengjia, Hu, Shengli, Santurkar, Shibani, Chaudhuri, Shraman Ray, Zhang, Shuyuan, Fu, Siyuan, Papay, Spencer, Lin, Steph, Balaji, Suchir, Sanjeev, Suvansh, Sidor, Szymon, Broda, Tal, Clark, Aidan, Wang, Tao, Gordon, Taylor, Sanders, Ted, Patwardhan, Tejal, Sottiaux, Thibault, Degry, Thomas, Dimson, Thomas, Zheng, Tianhao, Garipov, Timur, Stasi, Tom, Bansal, Trapit, Creech, Trevor, Peterson, Troy, Eloundou, Tyna, Qi, Valerie, Kosaraju, Vineet, Monaco, Vinnie, Pong, Vitchyr, Fomenko, Vlad, Zheng, Weiyi, Zhou, Wenda, McCabe, Wes, Zaremba, Wojciech, Dubois, Yann, Lu, Yinghai, Chen, Yining, Cha, Young, Bai, Yu, He, Yuchen, Zhang, Yuchen, Wang, Yunyun, Shao, Zheng, Li, Zhuohan
The o1 model series is trained with large-scale reinforcement learning to reason using chain of thought. These advanced reasoning capabilities provide new avenues for improving the safety and robustness of our models. In particular, our models can reason about our safety policies in context when responding to potentially unsafe prompts, through deliberative alignment. This leads to state-of-the-art performance on certain benchmarks for risks such as generating illicit advice, choosing stereotyped responses, and succumbing to known jailbreaks. Training models to incorporate a chain of thought before answering has the potential to unlock substantial benefits, while also increasing potential risks that stem from heightened intelligence. Our results underscore the need for building robust alignment methods, extensively stress-testing their efficacy, and maintaining meticulous risk management protocols. This report outlines the safety work carried out for the OpenAI o1 and OpenAI o1-mini models, including safety evaluations, external red teaming, and Preparedness Framework evaluations.
FullStack Bench: Evaluating LLMs as Full Stack Coders
Bytedance-Seed-Foundation-Code-Team, null, :, null, Cheng, Yao, Chen, Jianfeng, Chen, Jie, Chen, Li, Chen, Liyu, Chen, Wentao, Chen, Zhengyu, Geng, Shijie, Li, Aoyan, Li, Bo, Li, Bowen, Li, Linyi, Liu, Boyi, Liu, Jerry, Liu, Kaibo, Liu, Qi, Liu, Shukai, Liu, Siyao, Liu, Tianyi, Liu, Tingkai, Liu, Yongfei, Long, Rui, Mai, Jing, Ning, Guanghan, Peng, Z. Y., Shen, Kai, Su, Jiahao, Su, Jing, Sun, Tao, Sun, Yifan, Tao, Yunzhe, Wang, Guoyin, Wang, Siwei, Wang, Xuwu, Wang, Yite, Wang, Zihan, Xia, Jinxiang, Xiang, Liang, Xiao, Xia, Xiao, Yongsheng, Xi, Chenguang, Xin, Shulin, Xu, Jingjing, Xu, Shikun, Yang, Hongxia, Yang, Jack, Yang, Yingxiang, Yuan, Jianbo, Zhang, Jun, Zhang, Yufeng, Zhang, Yuyu, Zheng, Shen, Zhu, He, Zhu, Ming
As the capabilities of code large language models (LLMs) continue to expand, their applications across diverse code intelligence domains are rapidly increasing. However, most existing datasets only evaluate limited application domains. To address this gap, we have developed a comprehensive code evaluation dataset FullStack Bench focusing on full-stack programming, which encompasses a wide range of application domains (e.g., basic programming, data analysis, software engineering, mathematics, and machine learning). Besides, to assess multilingual programming capabilities, in FullStack Bench, we design real-world instructions and corresponding unit test cases from 16 widely-used programming languages to reflect real-world usage scenarios rather than simple translations. Moreover, we also release an effective code sandbox execution tool (i.e., SandboxFusion) supporting various programming languages and packages to evaluate the performance of our FullStack Bench efficiently. Comprehensive experimental results on our FullStack Bench demonstrate the necessity and effectiveness of our FullStack Bench and SandboxFusion.