Goto

Collaborating Authors

 Zhang, Zhongfei (Mark)


Stacked Semantics-Guided Attention Model for Fine-Grained Zero-Shot Learning

Neural Information Processing Systems

Zero-Shot Learning (ZSL) is generally achieved via aligning the semantic relationships between the visual features and the corresponding class semantic descriptions. However, using the global features to represent fine-grained images may lead to sub-optimal results since they neglect the discriminative differences of local regions. Besides, different regions contain distinct discriminative information. The important regions should contribute more to the prediction. To this end, we propose a novel stacked semantics-guided attention (S2GA) model to obtain semantic relevant features by using individual class semantic features to progressively guide the visual features to generate an attention map for weighting the importance of different local regions. Feeding both the integrated visual features and the class semantic features into a multi-class classification architecture, the proposed framework can be trained end-to-end. Extensive experimental results on CUB and NABird datasets show that the proposed approach has a consistent improvement on both fine-grained zero-shot classification and retrieval tasks.


Stacked Semantics-Guided Attention Model for Fine-Grained Zero-Shot Learning

Neural Information Processing Systems

Zero-Shot Learning (ZSL) is generally achieved via aligning the semantic relationships between the visual features and the corresponding class semantic descriptions. However, using the global features to represent fine-grained images may lead to sub-optimal results since they neglect the discriminative differences of local regions. Besides, different regions contain distinct discriminative information. The important regions should contribute more to the prediction. To this end, we propose a novel stacked semantics-guided attention (S2GA) model to obtain semantic relevant features by using individual class semantic features to progressively guide the visual features to generate an attention map for weighting the importance of different local regions. Feeding both the integrated visual features and the class semantic features into a multi-class classification architecture, the proposed framework can be trained end-to-end. Extensive experimental results on CUB and NABird datasets show that the proposed approach has a consistent improvement on both fine-grained zero-shot classification and retrieval tasks.


Learning with Feature Network and Label Network Simultaneously

AAAI Conferences

For many supervised learning problems, limited training samples and incomplete labels are two difficult challenges, which usually lead to degenerated performance on label prediction. To improve the generalization performance, in this paper, we propose Doubly Regularized Multi-Label learning (DRML) by exploiting feature network and label network regularization simultaneously. In more details, the proposed algorithm first constructs a feature network and a label network with marginalized linear denoising autoencoder in data feature set and label set, respectively, and then learns a robust predictor with the feature network and the label network regularization simultaneously. While DRML is a general method for multi-label learning, in the evaluations we focus on the specific application of multi-label text tagging. Extensive evaluations on three benchmark data sets demonstrate that DRML outstands with a superior performance in comparison with some existing multi-label learning methods.


Doubly Convolutional Neural Networks

Neural Information Processing Systems

Building large models with parameter sharing accounts for most of the success of deep convolutional neural networks (CNNs). In this paper, we propose doubly convolutional neural networks (DCNNs), which significantly improve the performance of CNNs by further exploring this idea. In stead of allocating a set of convolutional filters that are independently learned, a DCNN maintains groups of filters where filters within each group are translated versions of each other. Practically, a DCNN can be easily implemented by a two-step convolution procedure, which is supported by most modern deep learning libraries. We perform extensive experiments on three image classification benchmarks: CIFAR-10, CIFAR-100 and ImageNet, and show that DCNNs consistently outperform other competing architectures. We have also verified that replacing a convolutional layer with a doubly convolutional layer at any depth of a CNN can improve its performance. Moreover, various design choices of DCNNs are demonstrated, which shows that DCNN can serve the dual purpose of building more accurate models and/or reducing the memory footprint without sacrificing the accuracy.


Learning with Marginalized Corrupted Features and Labels Together

AAAI Conferences

Tagging has become increasingly important in many real-world applications noticeably including web applications, such as web blogs and resource sharing systems. Despite this importance, tagging methods often face difficult challenges such as limited training samples and incomplete labels, which usually lead to degenerated performance on tag prediction. To improve the generalization performance, in this paper, we propose Regularized Marginalized Cross-View learning (RMCV) by jointly modeling on attribute noise and label noise. In more details, the proposed model constructs infinite training examples with attribute noises from known exponential-family distributions and exploits label noise via marginalized denoising autoencoder. Therefore, the model benefits from its robustness and alleviates the problem of tag sparsity. While RMCV is a general method for learning tagging, in the evaluations we focus on the specific application of multi-label text tagging. Extensive evaluations on three benchmark data sets demonstrate that RMCV outstands with a superior performance in comparison with state-of-the-art methods.


Semisupervised Autoencoder for Sentiment Analysis

AAAI Conferences

In this paper, we investigate the usage of autoencoders in modeling textual data. Traditional autoencoders suffer from at least two aspects: scalability with the high dimensionality of vocabulary size and dealing with task-irrelevant words. We address this problem by introducing supervision via the loss function of autoencoders. In particular, we first train a linear classifier on the labeled data, then define a loss for the autoencoder with the weights learned from the linear classifier. To reduce the bias brought by one single classifier, we define a posterior probability distribution on the weights of the classifier, and derive the marginalized loss of the autoencoder with Laplace approximation. We show that our choice of loss function can be rationalized from the perspective of Bregman Divergence, which justifies the soundness of our model. We evaluate the effectiveness of our model on six sentiment analysis datasets, and show that our model significantly outperforms all the competing methods with respect to classification accuracy. We also show that our model is able to take advantage of unlabeled dataset and get improved performance. We further show that our model successfully learns highly discriminative feature maps, which explains its superior performance.