Goto

Collaborating Authors

 generalization error


Generalization Bounds via Conditional f-Information

Neural Information Processing Systems

In this work, we introduce novel information-theoretic generalization bounds using the conditional f-information framework, an extension of the traditional conditional mutual information (MI) framework. We provide a generic approach to derive generalization bounds via f-information in the supersample setting, applicable to both bounded and unbounded loss functions. Unlike previous MIbased bounds, our proof strategy does not rely on upper bounding the cumulantgenerating function (CGF) in the variational formula of MI. Instead, we set the CGF or its upper bound to zero by carefully selecting the measurable function invoked in the variational formula. Although some of our techniques are partially inspired by recent advances in the coin-betting framework (e.g., Jang et al. (2023)), our results are independent of any previous findings from regret guarantees of online gambling algorithms. Additionally, our newly derived MI-based bound recovers many previous results and improves our understanding of their potential limitations. Finally, we empirically compare various f-information measures for generalization, demonstrating the improvement of our new bounds over the previous bounds.


Universality in Transfer Learning for Linear Models

Neural Information Processing Systems

We study the problem of transfer learning and fine-tuning in linear models for both regression and binary classification. In particular, we consider the use of stochastic gradient descent (SGD) on a linear model initialized with pretrained weights and using a small training data set from the target distribution. In the asymptotic regime of large models, we provide an exact and rigorous analysis and relate the generalization errors (in regression) and classification errors (in binary classification) for the pretrained and fine-tuned models. In particular, we give conditions under which the fine-tuned model outperforms the pretrained one. An important aspect of our work is that all the results are "universal", in the sense that they depend only on the first and second order statistics of the target distribution. They thus extend well beyond the standard Gaussian assumptions commonly made in the literature. Furthermore, our universality results extend beyond standard SGD training to the test error of a classification task trained using ridge regression.



Multi-step learning and underlying structure in statistical models

Neural Information Processing Systems

In multi-step learning, where a final learning task is accomplished via a sequence of intermediate learning tasks, the intuition is that successive steps or levels transform the initial data into representations more and more "suited" to the final learning task. A related principle arises in transfer-learning where Baxter (2000) proposed a theoretical framework to study how learning multiple tasks transforms the inductive bias of a learner. The most widespread multi-step learning approach is semisupervised learning with two steps: unsupervised, then supervised. Several authors (Castelli-Cover, 1996; Balcan-Blum, 2005; Niyogi, 2008; Ben-David et al, 2008; Urner et al, 2011) have analyzed SSL, with Balcan-Blum (2005) proposing a version of the PAC learning framework augmented by a "compatibility function" to link concept class and unlabeled data distribution. We propose to analyze SSL and other multi-step learning approaches, much in the spirit of Baxter's framework, by defining a learning problem generatively as a joint statistical model on X Y.


Margin-Based Generalization Lower Bounds for Boosted Classifiers

Neural Information Processing Systems

Boosting is one of the most successful ideas in machine learning. The most wellaccepted explanations for the low generalization error of boosting algorithms such as AdaBoost stem from margin theory. The study of margins in the context of boosting algorithms was initiated by Schapire, Freund, Bartlett and Lee (1998) and has inspired numerous boosting algorithms and generalization bounds. To date, the strongest known generalization (upper bound) is the kth margin bound of Gao and Zhou (2013). Despite the numerous generalization upper bounds that have been proved over the last two decades, nothing is known about the tightness of these bounds. In this paper, we give the first margin-based lower bounds on the generalization error of boosted classifiers. Our lower bounds nearly match the kth margin bound and thus almost settle the generalization performance of boosted classifiers in terms of margins.


RoPINN: Region Optimized Physics-Informed Neural Networks

Neural Information Processing Systems

Physics-informed neural networks (PINNs) have been widely applied to solve partial differential equations (PDEs) by enforcing outputs and gradients of deep models to satisfy target equations. Due to the limitation of numerical computation, PINNs are conventionally optimized on finite selected points. However, since PDEs are usually defined on continuous domains, solely optimizing models on scattered points may be insufficient to obtain an accurate solution for the whole domain. To mitigate this inherent deficiency of the default scatter-point optimization, this paper proposes and theoretically studies a new training paradigm as region optimization. Concretely, we propose to extend the optimization process of PINNs from isolated points to their continuous neighborhood regions, which can theoretically decrease the generalization error, especially for hidden high-order constraints of PDEs. A practical training algorithm, Region Optimized PINN (RoPINN), is seamlessly derived from this new paradigm, which is implemented by a straightforward but effective Monte Carlo sampling method. By calibrating the sampling process into trust regions, RoPINN finely balances optimization and generalization error. Experimentally, RoPINN consistently boosts the performance of diverse PINNs on a wide range of PDEs without extra backpropagation or gradient calculation. Code is available at this repository: https://github.com/thuml/RoPINN.


Generalization Bounds of Stochastic Gradient Descent for Wide and Deep Neural Networks

Neural Information Processing Systems

We study the training and generalization of deep neural networks (DNNs) in the over-parameterized regime, where the network width (i.e., number of hidden nodes per layer) is much larger than the number of training data points. We show that, the expected 0-1 loss of a wide enough ReLU network trained with stochastic gradient descent (SGD) and random initialization can be bounded by the training loss of a random feature model induced by the network gradient at initialization, which we call a neural tangent random feature (NTRF) model.


What Can ResNet Learn Efficiently, Going Beyond Kernels?

Neural Information Processing Systems

How can neural networks such as ResNet efficiently learn CIFAR-10 with test accuracy more than 96%, while other methods, especially kernel methods, fall relatively behind? Can we more provide theoretical justifications for this gap? Recently, there is an influential line of work relating neural networks to kernels in the over-parameterized regime, proving they can learn certain concept class that is also learnable by kernels with similar test error. Yet, can neural networks provably learn some concept class better than kernels? We answer this positively in the distribution-free setting.


Solving Sparse & High-Dimensional-Output Regression via Compression

Neural Information Processing Systems

Multi-Output Regression (MOR) has been widely used in scientific data analysis for decision-making. Unlike traditional regression models, MOR aims to simultaneously predict multiple real-valued outputs given an input. However, the increasing dimensionality of the outputs poses significant challenges regarding interpretability and computational scalability for modern MOR applications. As a first step to address these challenges, this paper proposes a Sparse & High-dimensional-Output REgression (SHORE) model by incorporating additional sparsity requirements to resolve the output interpretability, and then designs a computationally efficient twostage optimization framework capable of solving SHORE with provable accuracy via compression on outputs. Theoretically, we show that the proposed framework is computationally scalable while maintaining the same order of training loss and prediction loss before-and-after compression under arbitrary or relatively weak sample set conditions. Empirically, numerical results further validate the theoretical findings, showcasing the efficiency and accuracy of the proposed framework.


The Label Complexity of Active Learning from Observational Data

Neural Information Processing Systems

Counterfactual learning from observational data involves learning a classifier on an entire population based on data that is observed conditioned on a selection policy. This work considers this problem in an active setting, where the learner additionally has access to unlabeled examples and can choose to get a subset of these labeled by an oracle. Prior work on this problem uses disagreement-based active learning, along with an importance weighted loss estimator to account for counterfactuals, which leads to a high label complexity. We show how to instead incorporate a more efficient counterfactual risk minimizer into the active learning algorithm. This requires us to modify both the counterfactual risk to make it amenable to active learning, as well as the active learning process to make it amenable to the risk. We provably demonstrate that the result of this is an algorithm which is statistically consistent as well as more label-efficient than prior work.