Asia
Panchromatic and Multispectral Image Fusion via Alternating Reverse Filtering Network (Supplementary Materials)
The best results are highlighted by bold. It can be clearly seen that our alternating reverse filtering network performs the best compared with other state-of-the-art methods in all the indexes, indicating the superiority of our proposed method. Images in the last row are the MSE residues between the fused results and the ground truth. Compared with other competing methods, our model has minor spatial and spectral distortions. It can be easily concluded from the observation of MSE maps.
Wheeled, rugged robot dog built for extreme industrial missions
The machine is designed to inspect industrial sites, respond to disasters, carry out logistics operations and support scientific research. Deep Robotics, a company from China, has unveiled a durable four-legged robot built to operate in extreme environments that humans struggle to traverse. It's called the Lynx M20, and it builds upon the agility of its predecessor, the Lynx robot dog. This versatile machine is designed to handle anything from inspecting industrial sites and responding to disasters to carrying out logistics operations and supporting scientific research. Here's what you need to know.
ICNet: Intra-saliency Correlation Network for Co-Saliency Detection
Model-based methods produce coarse Co-SOD results due to hand-crafted intra-and inter-saliency features. Current data-driven models exploit inter-saliency cues, but undervalue the potential power of intra-saliency cues. In this paper, we propose an Intra-saliency Correlation Network (ICNet) to extract intra-saliency cues from the single image saliency maps (SISMs) predicted by any off-the-shelf SOD method, and obtain inter-saliency cues by correlation techniques. Specifically, we adopt normalized masked average pooling (NMAP) to extract latent intra-saliency categories from the SISMs and semantic features as intra cues. Then we employ a correlation fusion module (CFM) to obtain inter cues by exploiting correlations between the intra cues and single-image features. To improve Co-SOD performance, we propose a category-independent rearranged self-correlation feature (RSCF) strategy. Experiments on three benchmarks show that our ICNet outperforms previous state-of-the-art methods on Co-SOD.
'Shakespeare would be writing for games today': Cannes' first video game Lili is a retelling of Macbeth
The Cannes film festival isn't typically associated with video games, but this year it's playing host to an unusual collaboration. Lili is a co-production between the New York-based game studio iNK Stories (creator of 1979 Revolution: Black Friday, about a photojournalist in Iran) and the Royal Shakespeare Company, and it's been turning heads with its eye-catching translocation of Macbeth to modern-day Iran. "It's been such an incredible coup to have it as the first video game experience at Cannes," says iNK Stories co-founder Vassiliki Khonsari. "People have gone in saying, I'm not familiar playing games, so I may just try it out for five minutes. The Cannes festival's Immersive Competition began in 2024, although the lineup doesn't usually feature traditional video games. "VR films and projection mapping is the thrust of it," says iNK Stories' other co-founder, Vassiliki's husband Navid Khonsari. But Lili weaves live-action footage with video game mechanics in a similar way to a game such as Telling Lies or Immortality. Its lead, Zar Amir Ebrahimi, won best actress at Cannes three years ago. Lili focuses on the story of Lady Macbeth, here cast as the ambitious wife of an upwardly mobile officer in the Basij (a paramilitary volunteer militia within the Islamic Revolutionary Guard in Iran). As in the play, she plots a murder to secure her husband's rise. "I think that the narrative of Lady Macbeth is that she's manipulative, and that's exactly what got us interested," says Navid. "The social limitations based on her gender forced her to try to attain whatever leadership role she can," he continues. "If she was a man, she would have been one of the greatest kings that country would have ever experienced, but because she was a woman she had to work within the structure that was there for her.
LexEval: A Comprehensive Chinese Legal Benchmark for Evaluating Large Language Models You Chen Department of Computer Science Department of Computer Science Tsinghua University
Large language models (LLMs) have made significant progress in natural language processing tasks and demonstrate considerable potential in the legal domain. However, legal applications demand high standards of accuracy, reliability, and fairness. Applying existing LLMs to legal systems without careful evaluation of their potential and limitations could pose significant risks in legal practice. To this end, we introduce a standardized comprehensive Chinese legal benchmark LexEval. This benchmark is notable in the following three aspects: (1) Ability Modeling: We propose a new taxonomy of legal cognitive abilities to organize different tasks.
Causal Discovery from Event Sequences by Local Cause-Effect Attribution
Sequences of events, such as crashes in the stock market or outages in a network, contain strong temporal dependencies, whose understanding is crucial to react to and influence future events. In this paper, we study the problem of discovering the underlying causal structure from event sequences. To this end, we introduce a new causal model, where individual events of the cause trigger events of the effect with dynamic delays. We show that in contrast to existing methods based on Granger causality, our model is identifiable for both instant and delayed effects. We base our approach on the Algorithmic Markov Condition, by which we identify the true causal network as the one that minimizes the Kolmogorov complexity. As the Kolmogorov complexity is not computable, we instantiate our model using Minimum Description Length and show that the resulting score identifies the causal direction.
Stochastic Gradient Descent-Ascent and Consensus Optimization for Smooth Games: Convergence Analysis under Expected Co-coercivity
Two of the most prominent algorithms for solving unconstrained smooth games are the classical stochastic gradient descent-ascent (SGDA) and the recently introduced stochastic consensus optimization (SCO) [Mescheder et al., 2017]. SGDA is known to converge to a stationary point for specific classes of games, but current convergence analyses require a bounded variance assumption. SCO is used successfully for solving large-scale adversarial problems, but its convergence guarantees are limited to its deterministic variant. In this work, we introduce the expected co-coercivity condition, explain its benefits, and provide the first last-iterate convergence guarantees of SGDA and SCO under this condition for solving a class of stochastic variational inequality problems that are potentially non-monotone. We prove linear convergence of both methods to a neighborhood of the solution when they use constant step-size, and we propose insightful stepsize-switching rules to guarantee convergence to the exact solution. In addition, our convergence guarantees hold under the arbitrary sampling paradigm, and as such, we give insights into the complexity of minibatching.
The Image Local Autoregressive Transformer
Recently, AutoRegressive (AR) models for the whole image generation empowered by transformers have achieved comparable or even better performance compared to Generative Adversarial Networks (GANs). Unfortunately, directly applying such AR models to edit/change local image regions, may suffer from the problems of missing global information, slow inference speed, and information leakage of local guidance. To address these limitations, we propose a novel model - image Local Autoregressive Transformer (iLAT), to better facilitate the locally guided image synthesis. Our iLAT learns the novel local discrete representations, by the newly proposed local autoregressive (LA) transformer of the attention mask and convolution mechanism. Thus iLAT can efficiently synthesize the local image regions by key guidance information. Our iLAT is evaluated on various locally guided image syntheses, such as pose-guided person image synthesis and face editing. Both quantitative and qualitative results show the efficacy of our model.
Qualcomms 2025 Computex Highlights: Everything Announced in 20 Minutes
Qualcomm's 2025 Computex Highlights: Everything Announced in 20 Minutes Mashable Tech Science Life Social Good Entertainment Deals Shopping Games Search Cancel * * Search Result Tech Apps & Software Artificial Intelligence Cybersecurity Cryptocurrency Mobile Smart Home Social Media Tech Industry Transportation All Tech Science Space Climate Change Environment All Science Life Digital Culture Family & Parenting Health & Wellness Sex, Dating & Relationships Sleep Careers Mental Health All Life Social Good Activism Gender LGBTQ Racial Justice Sustainability Politics All Social Good Entertainment Games Movies Podcasts TV Shows Watch Guides All Entertainment SHOP THE BEST Laptops Budget Laptops Dating Apps Sexting Apps Hookup Apps VPNs Robot Vaccuums Robot Vaccum & Mop Headphones Speakers Kindles Gift Guides Mashable Choice Mashable Selects All Sex, Dating & Relationships All Laptops All Headphones All Robot Vacuums All VPN All Shopping Games Product Reviews Adult Friend Finder Bumble Premium Tinder Platinum Kindle Paperwhite PS5 vs PS5 Slim All Reviews All Shopping Deals Newsletters VIDEOS Mashable Shows All Videos Home Tech Watch all the highlights and reveals from Qualcomm's press conference at Computex 2025 in Taipei, Taiwan. Latest Videos Android XR Glasses Unveiled at Google I/O 2025 Watch Android XR Glasses in action at Google I/O 1 hour ago By Mashable Video'Caught Stealing' trailer sees Zoë Kravitz and Austin Butler's cat-sitting gone awry Darren Aronofsky's swaggering new film looks like a rollicking time. Loading... Subscribe These newsletters may contain advertising, deals, or affiliate links. By clicking Subscribe, you confirm you are 16 and agree to ourTerms of Use and Privacy Policy. See you at your inbox!
Everything Announced at AMDs 2025 Computex Keynote in 19 Minutes
Everything Announced at AMD's 2025 Computex Keynote in 19 Minutes Mashable Tech Science Life Social Good Entertainment Deals Shopping Games Search Cancel * * Search Result Tech Apps & Software Artificial Intelligence Cybersecurity Cryptocurrency Mobile Smart Home Social Media Tech Industry Transportation All Tech Science Space Climate Change Environment All Science Life Digital Culture Family & Parenting Health & Wellness Sex, Dating & Relationships Sleep Careers Mental Health All Life Social Good Activism Gender LGBTQ Racial Justice Sustainability Politics All Social Good Entertainment Games Movies Podcasts TV Shows Watch Guides All Entertainment SHOP THE BEST Laptops Budget Laptops Dating Apps Sexting Apps Hookup Apps VPNs Robot Vaccuums Robot Vaccum & Mop Headphones Speakers Kindles Gift Guides Mashable Choice Mashable Selects All Sex, Dating & Relationships All Laptops All Headphones All Robot Vacuums All VPN All Shopping Games Product Reviews Adult Friend Finder Bumble Premium Tinder Platinum Kindle Paperwhite PS5 vs PS5 Slim All Reviews All Shopping Deals Newsletters VIDEOS Mashable Shows All Videos Home Tech Everything Announced at AMD's 2025 Computex Keynote in 19 Minutes Watch highlights from AMD's Computex press conference. Latest Videos Android XR Glasses Unveiled at Google I/O 2025 Watch Android XR Glasses in action at Google I/O 1 hour ago ByMashable Video'Caught Stealing' trailer sees Zoë Kravitz and Austin Butler's cat-sitting gone awry Darren Aronofsky's swaggering new film looks like a rollicking time. Loading... Subscribe These newsletters may contain advertising, deals, or affiliate links. By clicking Subscribe, you confirm you are 16 and agree to ourTerms of Use and Privacy Policy. See you at your inbox!