Road
PolyDiffuse: Polygonal Shape Reconstruction via Guided Set Diffusion Models
This paper presents PolyDiffuse, a novel structured reconstruction algorithm that transforms visual sensor data into polygonal shapes with Diffusion Models (DM), an emerging machinery amid exploding generative AI, while formulating reconstruction as a generation process conditioned on sensor data. The task of structured reconstruction poses two fundamental challenges to DM: 1) A structured geometry is a "set" (e.g., a set of polygons for a floorplan geometry), where a sample of N elements has N! different but equivalent representations, making the denoising highly ambiguous; and 2) A "reconstruction" task has a single solution, where an initial noise needs to be chosen carefully, while any initial noise works for a generation task. Our technical contribution is the introduction of a Guided Set Diffusion Model where 1) the forward diffusion process learns guidance networks to control noise injection so that one representation of a sample remains distinct from its other permutation variants, thus resolving denoising ambiguity; and 2) the reverse denoising process reconstructs polygonal shapes, initialized and directed by the guidance networks, as a conditional generation process subject to the sensor data. We have evaluated our approach for reconstructing two types of polygonal shapes: floorplan as a set of polygons and HD map for autonomous cars as a set of polylines. Through extensive experiments on standard benchmarks, we demonstrate that PolyDiffuse significantly advances the current state of the art and enables broader practical applications. The code and data are available on our project page: https://poly-diffuse.github.io.
ZOPP: A Framework of Zero-shot Offboard Panoptic Perception for Autonomous Driving
Offboard perception aims to automatically generate high-quality 3D labels for autonomous driving (AD) scenes. Existing offboard methods focus on 3D object detection with closed-set taxonomy and fail to match human-level recognition capability on the rapidly evolving perception tasks. Due to heavy reliance on human labels and the prevalence of data imbalance and sparsity, a unified framework for offboard auto-labeling various elements in AD scenes that meets the distinct needs of perception tasks is not being fully explored. In this paper, we propose a novel multi-modal Zero-shot Offboard Panoptic Perception (ZOPP) framework for autonomous driving scenes. ZOPP integrates the powerful zero-shot recognition capabilities of vision foundation models and 3D representations derived from point clouds.
Learning to Understand Open-World Video Anomalies 1,2
Video Anomaly Detection (VAD) systems can autonomously monitor and identify disturbances, reducing the need for manual labor and associated costs. However, current VAD systems are often limited by their superficial semantic understanding of scenes and minimal user interaction. Additionally, the prevalent data scarcity in existing datasets restricts their applicability in open-world scenarios.
Understanding Multi-Granularity for Open-Vocabulary Part Segmentation
Open-vocabulary part segmentation (OVPS) is an emerging research area focused on segmenting fine-grained entities using diverse and previously unseen vocabularies. Our study highlights the inherent complexities of part segmentation due to intricate boundaries and diverse granularity, reflecting the knowledge-based nature of part identification. To address these challenges, we propose PartCLIPSeg, a novel framework utilizing generalized parts and object-level contexts to mitigate the lack of generalization in fine-grained parts.
Autonomous Driving with Spiking Neural Networks 1
Autonomous driving demands an integrated approach that encompasses perception, prediction, and planning, all while operating under strict energy constraints to enhance scalability and environmental sustainability. We present Spiking Autonomous Driving (SAD), the first unified Spiking Neural Network (SNN) to address the energy challenges faced by autonomous driving systems through its event-driven and energy-efficient nature. SAD is trained end-to-end and consists of three main modules: perception, which processes inputs from multi-view cameras to construct a spatiotemporal bird's eye view; prediction, which utilizes a novel dual-pathway with spiking neurons to forecast future states; and planning, which generates safe trajectories considering predicted occupancy, traffic rules, and ride comfort. Evaluated on the nuScenes dataset, SAD achieves competitive performance in perception, prediction, and planning tasks, while drawing upon the energy efficiency of SNNs. This work highlights the potential of neuromorphic computing to be applied to energy-efficient autonomous driving, a critical step toward sustainable and safety-critical automotive technology. Our code is available at https://github.com/ridgerchu/SAD.
AdaPKC: PeakConv with Adaptive Peak Receptive Field for Radar Semantic Segmentation Teng Li2
Deep learning-based radar detection technology is receiving increasing attention in areas such as autonomous driving, UAV surveillance, and marine monitoring. Among recent efforts, PeakConv (PKC) provides a solution that can retain the peak response characteristics of radar signals and play the characteristics of deep convolution, thereby improving the effect of radar semantic segmentation (RSS). However, due to the use of a pre-set fixed peak receptive field sampling rule, PKC still has limitations in dealing with problems such as inconsistency of target frequency domain response broadening, non-homogeneous and time-varying characteristic of noise/clutter distribution. Therefore, this paper proposes an idea of adaptive peak receptive field, and upgrades PKC to AdaPKC based on this idea. Beyond that, a novel fine-tuning technology to further boost the performance of AdaPKC-based RSS networks is presented. Through experimental verification using various real-measured radar data (including publicly available low-cost millimeter-wave radar dataset for autonomous driving and self-collected Ku-band surveillance radar dataset), we found that the performance of AdaPKC-based models surpasses other SoTA methods in RSS tasks.
KG-FIT: Knowledge Graph Fine-Tuning Upon Open-World Knowledge
Knowledge Graph Embedding (KGE) techniques are crucial in learning compact representations of entities and relations within a knowledge graph, facilitating efficient reasoning and knowledge discovery. While existing methods typically focus either on training KGE models solely based on graph structure or fine-tuning pre-trained language models with classification data in KG, KG-FIT leverages LLM-guided refinement to construct a semantically coherent hierarchical structure of entity clusters.
Feature-Level Adversarial Attacks and Ranking Disruption for Visible-Infrared Person Re-identification
Visible-infrared person re-identification (VIReID) is widely used in fields such as video surveillance and intelligent transportation, imposing higher demands on model security. In practice, the adversarial attacks based on VIReID aim to disrupt output ranking and quantify the security risks of models. Although numerous studies have been emerged on adversarial attacks and defenses in fields such as face recognition, person re-identification, and pedestrian detection, there is currently a lack of research on the security of VIReID systems. To this end, we propose to explore the vulnerabilities of VIReID systems and prevent potential serious losses due to insecurity. Compared to research on single-modality ReID, adversarial feature alignment and modality differences need to be particularly emphasized. Thus, we advocate for feature-level adversarial attacks to disrupt the output rankings of VIReID systems.
CuMo: Scaling Multimodal LLM with Co-Upcycled Mixture-of-Experts
Recent advancements in Multimodal Large Language Models (LLMs) have focused primarily on scaling by increasing text-image pair data and enhancing LLMs to improve performance on multimodal tasks. However, these scaling approaches are computationally expensive and overlook the significance of efficiently improving model capabilities from the vision side. Inspired by the successful applications of Mixture-of-Experts (MoE) in LLMs, which improves model scalability during training while keeping inference costs similar to those of smaller models, we propose CuMo, which incorporates Co-upcycled Top-K sparsely-gated Mixtureof-experts blocks into both the vision encoder and the MLP connector, thereby enhancing the multimodal LLMs with neglectable additional activated parameters during inference. CuMo first pre-trains the MLP blocks and then initializes each expert in the MoE block from the pre-trained MLP block during the visual instruction tuning stage, with auxiliary losses to ensure a balanced loading of experts. CuMo outperforms state-of-the-art multimodal LLMs across various VQA and visual-instruction-following benchmarks within each model size group, all while training exclusively on open-sourced datasets.
VastTrack: Vast Category Visual Object Tracking
In this paper, we propose a novel benchmark, named VastTrack, aiming to facilitate the development of general visual tracking via encompassing abundant classes and videos. VastTrack consists of a few attractive properties: (1) Vast Object Category. In particular, it covers targets from 2,115 categories, significantly surpassing object classes of existing popular benchmarks (e.g., GOT-10k with 563 classes and LaSOT with 70 categories). Through providing such vast object classes, we expect to learn more general object tracking.