Goto

Collaborating Authors

 Switzerland


Prism: A Framework for Decoupling and Assessing the Capabilities of VLMs

Neural Information Processing Systems

Vision Language Models (VLMs) demonstrate remarkable proficiency in addressing a wide array of visual questions, which requires strong perception and reasoning faculties. Assessing these two competencies independently is crucial for model refinement, despite the inherent difficulty due to the intertwined nature of seeing and reasoning in existing VLMs. To tackle this issue, we present Prism, an innovative framework designed to disentangle the perception and reasoning processes involved in visual question solving. Prism comprises two distinct stages: a perception stage that utilizes a VLM to extract and articulate visual information in textual form, and a reasoning stage that formulates responses based on the extracted visual information using a Large Language Model (LLM). This modular design enables the systematic comparison and assessment of both proprietary and open-source VLM for their perception and reasoning strengths. Our analytical framework provides several valuable insights, underscoring Prism's potential as a cost-effective solution for vision-language tasks. By combining a streamlined VLM focused on perception with a powerful LLM tailored for reasoning, Prism achieves superior results in general vision-language tasks while substantially cutting down on training and operational expenses. Quantitative evaluations show that Prism, when configured with a vanilla 2B LLaVA and freely accessible GPT-3.5, delivers performance on par with VLMs 10 larger on the rigorous multimodal benchmark MMStar.


PowerSGD: Practical Low-Rank Gradient Compression for Distributed Optimization

Neural Information Processing Systems

We study lossy gradient compression methods to alleviate the communication bottleneck in data-parallel distributed optimization. Despite the significant attention received, current compression schemes either do not scale well, or fail to achieve the target test accuracy. We propose a new low-rank gradient compressor based on power iteration that can i) compress gradients rapidly, ii) efficiently aggregate the compressed gradients using all-reduce, and iii) achieve test performance on par with SGD. The proposed algorithm is the only method evaluated that achieves consistent wall-clock speedups when benchmarked against regular SGD using highly optimized off-the-shelf tools for distributed communication. We demonstrate reduced training times for convolutional networks as well as LSTMs on common datasets. Our code is available at https://github.com/epfml/powersgd.


Toward a Stable, Fair, and Comprehensive Evaluation of Object Hallucination in Large Vision-Language Models

Neural Information Processing Systems

Given different instructions, large vision-language models (LVLMs) exhibit different degrees of object hallucinations, posing a significant challenge to the evaluation of object hallucinations. Overcoming this challenge, existing object hallucination evaluation methods average the results obtained from a set of instructions. However, these methods fail to provide consistent evaluation across instruction sets that generate image descriptions of significantly different lengths. In this paper, we present the first systematic investigation into the effect of instructions on object hallucinations in LVLMs, with a specific focus on the role played by image description lengths. A valuable finding is that instructions indirectly affect hallucinations through the length of image descriptions.


Enhancing Semi-Supervised Learning via Representative and Diverse Sample Selection

Neural Information Processing Systems

Semi-Supervised Learning (SSL) has become a preferred paradigm in many deep learning tasks, which reduces the need for human labor. Previous studies primarily focus on effectively utilising the labelled and unlabeled data to improve performance. However, we observe that how to select samples for labelling also significantly impacts performance, particularly under extremely low-budget settings. The sample selection task in SSL has been under-explored for a long time. To fill in this gap, we propose a Representative and Diverse Sample Selection approach (RDSS). By adopting a modified Frank-Wolfe algorithm to minimise a novel criterion α-Maximum Mean Discrepancy (α-MMD), RDSS samples a representative and diverse subset for annotation from the unlabeled data. We demonstrate that minimizing α-MMD enhances the generalization ability of low-budget learning. Experimental results show that RDSS consistently improves the performance of several popular SSL frameworks and outperforms the state-of-the-art sample selection approaches used in Active Learning (AL) and Semi-Supervised Active Learning (SSAL), even with constrained annotation budgets. Our code is available at RDSS.


FlexCap: Describe Anything in Images in Controllable Detail

Neural Information Processing Systems

We introduce FlexCap, a vision-language model that generates region-specific descriptions of varying lengths. FlexCap is trained to produce length-conditioned captions for input boxes, enabling control over information density, with descriptions ranging from concise object labels to detailed captions. To achieve this, we create large-scale training datasets of image region descriptions with varying lengths from captioned web images. We demonstrate FlexCap's effectiveness in several applications: first, it achieves strong performance in dense captioning tasks on the Visual Genome dataset. Second, we show how FlexCap's localized descriptions can serve as input to a large language model to create a visual question answering (VQA) system, achieving state-of-the-art zero-shot performance on multiple VQA benchmarks. Our experiments illustrate FlexCap's utility for tasks including image labeling, object attribute recognition, and visual dialog.


PowerGraph: A power grid benchmark dataset for graph neural networks

Neural Information Processing Systems

Power grids are critical infrastructures of paramount importance to modern society and, therefore, engineered to operate under diverse conditions and failures. The ongoing energy transition poses new challenges for the decision-makers and system operators. Therefore, developing grid analysis algorithms is important for supporting reliable operations. These key tools include power flow analysis and system security analysis, both needed for effective operational and strategic planning. The literature review shows a growing trend of machine learning (ML) models that perform these analyses effectively. In particular, Graph Neural Networks (GNNs) stand out in such applications because of the graph-based structure of power grids.


GAVEL: Generating Games Via Evolution and Language Models

Neural Information Processing Systems

Automatically generating novel and interesting games is a complex task. Challenges include representing game rules in a computationally workable form, searching through the large space of potential games under most such representations, and accurately evaluating the originality and quality of previously unseen games. Prior work in automated game generation has largely focused on relatively restricted rule representations and relied on domain-specific heuristics. In this work, we explore the generation of novel games in the comparatively expansive Ludii game description language, which encodes the rules of over 1000 board games in a variety of styles and modes of play. We draw inspiration from recent advances in large language models and evolutionary computation in order to train a model that intelligently mutates and recombines games and mechanics expressed as code. We demonstrate both quantitatively and qualitatively that our approach is capable of generating new and interesting games, including in regions of the potential rules space not covered by existing games in the Ludii dataset. A sample of the generated games are available to play online through the Ludii portal.


GenRec: Unifying Video Generation and Recognition with Diffusion Models

Neural Information Processing Systems

Video diffusion models are able to generate high-quality videos by learning strong spatial-temporal priors on large-scale datasets. In this paper, we aim to investigate whether such priors derived from a generative process are suitable for video recognition, and eventually joint optimization of generation and recognition. Building upon Stable Video Diffusion, we introduce GenRec, the first unified framework trained with a random-frame conditioning process so as to learn generalized spatial-temporal representations. The resulting framework can naturally supports generation and recognition, and more importantly is robust even when visual inputs contain limited information. Extensive experiments demonstrate the efficacy of GenRec for both recognition and generation. In particular, GenRec achieves competitive recognition performance, offering 75.8% and 87.2% accuracy on SSV2 and K400, respectively. GenRec also performs the best on class-conditioned image-to-video generation, achieving 46.5 and 49.3 FVD scores on SSV2 and EK-100 datasets. Furthermore, GenRec demonstrates extraordinary robustness in scenarios that only limited frames can be observed.


Efficiently Learning Fourier Sparse Set Functions

Neural Information Processing Systems

Learning set functions is a key challenge arising in many domains, ranging from sketching graphs to black-box optimization with discrete parameters. In this paper we consider the problem of efficiently learning set functions that are defined over a ground set of size n and that are sparse (say k-sparse) in the Fourier domain. This is a wide class, that includes graph and hypergraph cut functions, decision trees and more.


YOLOv10: Real-Time End-to-End Object Detection Ao Wang 1 Hui Chen 2 Kai Chen

Neural Information Processing Systems

Over the past years, YOLOs have emerged as the predominant paradigm in the field of real-time object detection owing to their effective balance between computational cost and detection performance. Researchers have explored the architectural designs, optimization objectives, data augmentation strategies, and others for YO-LOs, achieving notable progress. However, the reliance on the non-maximum suppression (NMS) for post-processing hampers the end-to-end deployment of YOLOs and adversely impacts the inference latency. Besides, the design of various components in YOLOs lacks the comprehensive and thorough inspection, resulting in noticeable computational redundancy and limiting the model's capability.