Data Science
Heterogeneous Multi-player Multi-armed Bandits: Closing the Gap and Generalization
Despite the significant interests and many progresses in decentralized multi-player multi-armed bandits (MP-MAB) problems in recent years, the regret gap to the natural centralized lower bound in the heterogeneous MP-MAB setting remains open. In this paper, we propose BEACON - Batched Exploration with Adaptive COmmunicatioN - that closes this gap. BEACON accomplishes this goal with novel contributions in implicit communication and efficient exploration. For the former, we propose a novel adaptive differential communication (ADC) design that significantly improves the implicit communication efficiency. For the latter, a carefully crafted batched exploration scheme is developed to enable incorporation of the combinatorial upper confidence bound (CUCB) principle. We then generalize the existing linear-reward MP-MAB problems, where the system reward is always the sum of individually collected rewards, to a new MP-MAB problem where the system reward is a general (nonlinear) function of individual rewards. We extend BEACON to solve this problem and prove a logarithmic regret. BEACON bridges the algorithm design and regret analysis of combinatorial MAB (CMAB) and MP-MAB, two largely disjointed areas in MAB, and the results in this paper suggest that this previously ignored connection is worth further investigation.
Improved Coresets and Sublinear Algorithms for Power Means in Euclidean Spaces Vincent Cohen-Addad David Saulpic Chris Schwiegelshohn
Special cases of problem include the well-known Fermat-Weber problem - or geometric median problem - where z = 1, the mean or centroid where z = 2, and the Minimum Enclosing Ball problem, where z = . We consider these problem in the big data regime. Here, we are interested in sampling as few points as possible such that we can accurately estimate m. More specifically, we consider sublinear algorithms as well as coresets for these problems. Sublinear algorithms have a random query access to the set A and the goal is to minimize the number of queries.
C2FAR: Coarse-to-Fine Autoregressive Networks for Precise Probabilistic Forecasting
C2FAR generates a hierarchical, coarse-to-fine discretization of a variable autoregressively; progressively finer intervals of support are generated from a sequence of binned distributions, where each distribution is conditioned on previously-generated coarser intervals. Unlike prior (flat) binned distributions, C2FAR can represent values with exponentially higher precision, for only a linear increase in complexity. We use C2FAR for probabilistic forecasting via a recurrent neural network, thus modeling time series autoregressively in both space and time. C2FAR is the first method to simultaneously handle discrete and continuous series of arbitrary scale and distribution shape. This flexibility enables a variety of time series use cases, including anomaly detection, interpolation, and compression. C2FAR achieves improvements over the state-of-the-art on several benchmark forecasting datasets.
A Tight Lower Bound and Efficient Reduction for Swap Regret
Swap regret, a generic performance measure of online decision-making algorithms, plays an important role in the theory of repeated games, along with a close connection to correlated equilibria in strategic games. This paper shows an (p TN log N)-lower bound for swap regret, where T and N denote the numbers of time steps and available actions, respectively. Our lower bound is tight up to a constant, and resolves an open problem mentioned, e.g., in the book by Nisan et al. [28]. Besides, we present a computationally efficient reduction method that converts no-external-regret algorithms to no-swap-regret algorithms. This method can be applied not only to the full-information setting but also to the bandit setting and provides a better regret bound than previous results.
SkinCon: A skin disease dataset densely annotated by domain experts for fine-grained model debugging and analysis Roberto Novoa
However, there are only a few datasets that include concept-level meta-labels and most of these meta-labels are relevant for natural images that do not require domain expertise. Previous densely annotated datasets in medicine focused on meta-labels that are relevant to a single disease such as osteoarthritis or melanoma. In dermatology, skin disease is described using an established clinical lexicon that allows clinicians to describe physical exam findings to one another. To provide a medical dataset densely annotated by domain experts with annotations useful across multiple disease processes, we developed SkinCon: a skin disease dataset densely annotated by dermatologists. SkinCon includes 3230 images from the Fitzpatrick 17k skin disease dataset densely annotated with 48 clinical concepts, 22 of which have at least 50 images representing the concept. The concepts used were chosen by two dermatologists considering the clinical descriptor terms used to describe skin lesions.
Efficient Streaming Algorithms for Graphlet Sampling Marco Bressan Cispa Helmholtz Center for Information Security Department of Computer Science Saarland University
Given a graph G and a positive integer k, the Graphlet Sampling problem asks to sample a connected induced k-vertex subgraph of G uniformly at random. Graphlet sampling enhances machine learning applications by transforming graph structures into feature vectors for tasks such as graph classification and subgraph identification, boosting neural network performance, and supporting clustered federated learning by capturing local structures and relationships.
Feature-fortified Unrestricted Graph Alignment
The necessity to align two graphs, minimizing a structural distance metric, is prevalent in biology, chemistry, recommender systems, and social network analysis. Due to the problem's NP-hardness, prevailing graph alignment methods follow a modular and mediated approach, solving the problem restricted to the domain of intermediary graph representations or products like embeddings, spectra, and graph signals. Restricting the problem to this intermediate space may distort the original problem and are hence predisposed to miss high-quality solutions.
What the Harm Sharp Bounds on the Fraction Negatively Affected by Treatment
The fundamental problem of causal inference - that we never observe counterfactuals - prevents us from identifying how many might be negatively affected by a proposed intervention. If, in an A/B test, half of users click (or buy, or watch, or renew, etc.), whether exposed to the standard experience A or a new one B, hypothetically it could be because the change affects no one, because the change positively affects half the user population to go from no-click to click while negatively affecting the other half, or something in between. While unknowable, this impact is clearly of material importance to the decision to implement a change or not, whether due to fairness, long-term, systemic, or operational considerations. We therefore derive the tightest-possible (i.e., sharp) bounds on the fraction negatively affected (and other related estimands) given data with only factual observations, whether experimental or observational.
Beyond Euclidean: Dual-Space Representation Learning for Weakly Supervised Video Violence Detection
While numerous Video Violence Detection (VVD) methods have focused on representation learning in Euclidean space, they struggle to learn sufficiently discriminative features, leading to weaknesses in recognizing normal events that are visually similar to violent events (i.e., ambiguous violence). In contrast, hyperbolic representation learning, renowned for its ability to model hierarchical and complex relationships between events, has the potential to amplify the discrimination between visually similar events. Inspired by these, we develop a novel Dual-Space Representation Learning (DSRL) method for weakly supervised VVD to utilize the strength of both Euclidean and hyperbolic geometries, capturing the visual features of events while also exploring the intrinsic relations between events, thereby enhancing the discriminative capacity of the features. DSRL employs a novel information aggregation strategy to progressively learn event context in hyperbolic spaces, which selects aggregation nodes through layer-sensitive hyperbolic association degrees constrained by hyperbolic Dirichlet energy. Furthermore, DSRL attempts to break the cyber-balkanization of different spaces, utilizing cross-space attention to facilitate information interactions between Euclidean and hyperbolic space to capture better discriminative features for final violence detection. Comprehensive experiments demonstrate the effectiveness of our proposed DSRL.
AR-Pro: Counterfactual Explanations for Anomaly Repair with Formal Properties
Anomaly detection is widely used for identifying critical errors and suspicious behaviors, but current methods lack interpretability. We leverage common properties of existing methods and recent advances in generative models to introduce counterfactual explanations for anomaly detection. Given an input, we generate its counterfactual as a diffusion-based repair that shows what a non-anomalous version should have looked like. A key advantage of this approach is that it enables a domain-independent formal specification of explainability desiderata, offering a unified framework for generating and evaluating explanations. We demonstrate the effectiveness of our anomaly explainability framework, AR-Pro, on vision (MVTec, VisA) and time-series (SWaT, WADI, HAI) anomaly datasets. The code used for the experiments is accessible at: https://github.com/xjiae/arpro.