Country
Russia-Ukraine war: List of key events, day 1,183
Russia's Defence Ministry said air defences shot down 105 Ukrainian drones over Russian regions, including 35 over the Moscow region, after the ministry said a day earlier that it had downed more than 300 Ukrainian drones. Kherson Governor Oleksandr Prokudin said one person was killed in a Russian artillery attack on the region. H said over the past day, 35 areas in Kherson, including Kherson city, came under artillery shelling and air attacks, wounding 11 people. Ukrainian President Zelenskyy said the "most intense situation" is in the Donetsk region, and the army is continuing "active operations in the Kursk and Belgorod regions". Russia's Defence Ministry said air defences shot down 105 Ukrainian drones over Russian regions, including 35 over the Moscow region, after the ministry said a day earlier that it had downed more than 300 Ukrainian drones.
Generalizing Bayesian Optimization with Decision-theoretic Entropies Willie Neiswanger
Bayesian optimization (BO) is a popular method for efficiently inferring optima of an expensive black-box function via a sequence of queries. Existing informationtheoretic BO procedures aim to make queries that most reduce the uncertainty about optima, where the uncertainty is captured by Shannon entropy. However, an optimal measure of uncertainty would, ideally, factor in how we intend to use the inferred quantity in some downstream procedure. In this paper, we instead consider a generalization of Shannon entropy from work in statistical decision theory [13, 39], which contains a broad class of uncertainty measures parameterized by a problem-specific loss function corresponding to a downstream task. We first show that special cases of this entropy lead to popular acquisition functions used in BO procedures such as knowledge gradient, expected improvement, and entropy search. We then show how alternative choices for the loss yield a flexible family of acquisition functions that can be customized for use in novel optimization settings.
Causal Discovery from Event Sequences by Local Cause-Effect Attribution
Sequences of events, such as crashes in the stock market or outages in a network, contain strong temporal dependencies, whose understanding is crucial to react to and influence future events. In this paper, we study the problem of discovering the underlying causal structure from event sequences. To this end, we introduce a new causal model, where individual events of the cause trigger events of the effect with dynamic delays. We show that in contrast to existing methods based on Granger causality, our model is identifiable for both instant and delayed effects. We base our approach on the Algorithmic Markov Condition, by which we identify the true causal network as the one that minimizes the Kolmogorov complexity. As the Kolmogorov complexity is not computable, we instantiate our model using Minimum Description Length and show that the resulting score identifies the causal direction.
Invariant and Transportable Representations for Anti-Causal Domain Shifts and Victor Veitch Department of Computer Science, University of Chicago Department of Statistics, University of Chicago
Real-world classification problems must contend with domain shift, the (potential) mismatch between the domain where a model is deployed and the domain(s) where the training data was gathered. Methods to handle such problems must specify what structure is common between the domains and what varies. A natural assumption is that causal (structural) relationships are invariant in all domains. Then, it is tempting to learn a predictor for label Y that depends only on its causal parents. However, many real-world problems are "anti-causal" in the sense that Y is a cause of the covariates X--in this case, Y has no causal parents and the naive causal invariance is useless.
A The Embeddings
In this section, we briefly introduce the four kinds of emebddings consists the fusion embedding. The goal of position embedding module is to calibrate the position of each time point in the sequence so that the self-attention mechanism can recognize the relative positions between different time points in the input sequence. We design the token embedding module in order to enrich the features of each time point by fusion of other features from the adjacent time points within a certain interval. The role of spatial embedding is to locate and encode the spatial locations of different nodes, by which each node at different location possesses a unique spatial embedding. Thus, it enabling the model to identify nodes in different spatial and temporal planes after the dimensionality is compressed in the later computation.
Stochastic Gradient Descent-Ascent and Consensus Optimization for Smooth Games: Convergence Analysis under Expected Co-coercivity
Two of the most prominent algorithms for solving unconstrained smooth games are the classical stochastic gradient descent-ascent (SGDA) and the recently introduced stochastic consensus optimization (SCO) [Mescheder et al., 2017]. SGDA is known to converge to a stationary point for specific classes of games, but current convergence analyses require a bounded variance assumption. SCO is used successfully for solving large-scale adversarial problems, but its convergence guarantees are limited to its deterministic variant. In this work, we introduce the expected co-coercivity condition, explain its benefits, and provide the first last-iterate convergence guarantees of SGDA and SCO under this condition for solving a class of stochastic variational inequality problems that are potentially non-monotone. We prove linear convergence of both methods to a neighborhood of the solution when they use constant step-size, and we propose insightful stepsize-switching rules to guarantee convergence to the exact solution. In addition, our convergence guarantees hold under the arbitrary sampling paradigm, and as such, we give insights into the complexity of minibatching.
The Image Local Autoregressive Transformer
Recently, AutoRegressive (AR) models for the whole image generation empowered by transformers have achieved comparable or even better performance compared to Generative Adversarial Networks (GANs). Unfortunately, directly applying such AR models to edit/change local image regions, may suffer from the problems of missing global information, slow inference speed, and information leakage of local guidance. To address these limitations, we propose a novel model - image Local Autoregressive Transformer (iLAT), to better facilitate the locally guided image synthesis. Our iLAT learns the novel local discrete representations, by the newly proposed local autoregressive (LA) transformer of the attention mask and convolution mechanism. Thus iLAT can efficiently synthesize the local image regions by key guidance information. Our iLAT is evaluated on various locally guided image syntheses, such as pose-guided person image synthesis and face editing. Both quantitative and qualitative results show the efficacy of our model.
Explicit Regularisation in Gaussian Noise Injections
We study the regularisation induced in neural networks by Gaussian noise injections (GNIs). Though such injections have been extensively studied when applied to data, there have been few studies on understanding the regularising effect they induce when applied to network activations. Here we derive the explicit regulariser of GNIs, obtained by marginalising out the injected noise, and show that it penalises functions with high-frequency components in the Fourier domain; particularly in layers closer to a neural network's output. We show analytically and empirically that such regularisation produces calibrated classifiers with large classification margins.
Double Bubble, Toil and Trouble: Enhancing Certified Robustness through Transitivity Andrew C. Cullen 1 Paul Montague 2 Sarah M. Erfani 1
In response to subtle adversarial examples flipping classifications of neural network models, recent research has promoted certified robustness as a solution. There, invariance of predictions to all norm-bounded attacks is achieved through randomised smoothing of network inputs. Today's state-of-the-art certifications make optimal use of the class output scores at the input instance under test: no better radius of certification (under the L