A The Embeddings
–Neural Information Processing Systems
In this section, we briefly introduce the four kinds of emebddings consists the fusion embedding. The goal of position embedding module is to calibrate the position of each time point in the sequence so that the self-attention mechanism can recognize the relative positions between different time points in the input sequence. We design the token embedding module in order to enrich the features of each time point by fusion of other features from the adjacent time points within a certain interval. The role of spatial embedding is to locate and encode the spatial locations of different nodes, by which each node at different location possesses a unique spatial embedding. Thus, it enabling the model to identify nodes in different spatial and temporal planes after the dimensionality is compressed in the later computation.
Neural Information Processing Systems
May-22-2025, 05:33:08 GMT