Goto

Collaborating Authors

 Information Technology


Markov Processes on Curves for Automatic Speech Recognition

Neural Information Processing Systems

It is widely observed, for example, that fast speech is more prone to recognition errors than slow speech. A related effect, occurring at the phoneme level, is that consonants (l,re more frequently botched than vowels. Generally speaking, consonants have short-lived, non-stationary acoustic signatures; vowels, just the opposite. Thus, at the phoneme level, we can view the increased confusability of consonants as a consequence of locally fast speech.


Approximate Learning of Dynamic Models

Neural Information Processing Systems

Inference is a key component in learning probabilistic models from partially observable data. When learning temporal models, each of the many inference phases requires a traversal over an entire long data sequence; furthermore, the data structures manipulated are exponentially large, making this process computationally expensive. In [2], we describe an approximate inference algorithm for monitoring stochastic processes, and prove bounds on its approximation error. In this paper, we apply this algorithm as an approximate forward propagation step in an EM algorithm for learning temporal Bayesian networks. We provide a related approximation for the backward step, and prove error bounds for the combined algorithm.


On the Optimality of Incremental Neural Network Algorithms

Neural Information Processing Systems

We study the approximation of functions by two-layer feedforward neural networks, focusing on incremental algorithms which greedily add units, estimating single unit parameters at each stage. As opposed to standard algorithms for fixed architectures, the optimization at each stage is performed over a small number of parameters, mitigating many of the difficult numerical problems inherent in high-dimensional nonlinear optimization. We establish upper bounds on the error incurred by the algorithm, when approximating functions from the Sobolev class, thereby extending previous results which only provided rates of convergence for functions in certain convex hulls of functional spaces. By comparing our results to recently derived lower bounds, we show that the greedy algorithms are nearly optimal. Combined with estimation error results for greedy algorithms, a strong case can be made for this type of approach.


Unsupervised and Supervised Clustering: The Mutual Information between Parameters and Observations

Neural Information Processing Systems

Recent works in parameter estimation and neural coding have demonstrated that optimal performance are related to the mutual information between parameters and data. We consider the mutual information in the case where the dependency in the parameter (a vector 8) of the conditional p.d.f. of each observation (a vector



Learning Nonlinear Dynamical Systems Using an EM Algorithm

Neural Information Processing Systems

The Expectation-Maximization (EM) algorithm is an iterative procedure for maximum likelihood parameter estimation from data sets with missing or hidden variables [2]. It has been applied to system identification in linear stochastic state-space models, where the state variables are hidden from the observer and both the state and the parameters of the model have to be estimated simultaneously [9]. We present a generalization of the EM algorithm for parameter estimation in nonlinear dynamical systems. The "expectation" step makes use of Extended Kalman Smoothing to estimate the state, while the "maximization" step re-estimates the parameters using these uncertain state estimates. In general, the nonlinear maximization step is difficult because it requires integrating out the uncertainty in the states.


Coding Time-Varying Signals Using Sparse, Shift-Invariant Representations

Neural Information Processing Systems

A common way to represent a time series is to divide it into shortduration blocks, each of which is then represented by a set of basis functions. A limitation of this approach, however, is that the temporal alignment of the basis functions with the underlying structure in the time series is arbitrary. We present an algorithm for encoding a time series that does not require blocking the data. The algorithm finds an efficient representation by inferring the best temporal positions for functions in a kernel basis. These can have arbitrary temporal extent and are not constrained to be orthogonal.



An Entropic Estimator for Structure Discovery

Neural Information Processing Systems

We introduce a novel framework for simultaneous structure and parameter learning in hidden-variable conditional probability models, based on an en tropic prior and a solution for its maximum a posteriori (MAP) estimator. The MAP estimate minimizes uncertainty in all respects: cross-entropy between model and data; entropy of the model; entropy of the data's descriptive statistics. Iterative estimation extinguishes weakly supported parameters, compressing and sparsifying the model. Trimming operators accelerate this process by removing excess parameters and, unlike most pruning schemes, guarantee an increase in posterior probability. Entropic estimation takes a overcomplete random model and simplifies it, inducing the structure of relations between hidden and observed variables. Applied to hidden Markov models (HMMs), it finds a concise finite-state machine representing the hidden structure of a signal. We entropically model music, handwriting, and video time-series, and show that the resulting models are highly concise, structured, predictive, and interpretable: Surviving states tend to be highly correlated with meaningful partitions of the data, while surviving transitions provide a low-perplexity model of the signal dynamics.