Goto

Collaborating Authors

 Information Technology


Parametric Mixture Models for Multi-Labeled Text

Neural Information Processing Systems

We propose probabilistic generative models, called parametric mixture models (PMMs), for multiclass, multi-labeled text categorization problem. Conventionally, the binary classification approach has been employed, in which whether or not text belongs to a category is judged by the binary classifier for every category. In contrast, our approach can simultaneously detect multiple categories of text using PMMs. We derive efficient learning and prediction algorithms for PMMs. We also empirically show that our method could significantly outperform the conventional binary methods when applied to multi-labeled text categorization using real World Wide Web pages.


Exponential Family PCA for Belief Compression in POMDPs

Neural Information Processing Systems

Standard value function approaches to finding policies for Partially Observable Markov Decision Processes (POMDPs) are intractable for large models. The intractability of these algorithms is due to a great extent to their generating an optimal policy over the entire belief space. However, in real POMDP problems most belief states are unlikely, and there is a structured, low-dimensional manifold of plausible beliefs embedded in the high-dimensional belief space. We introduce a new method for solving large-scale POMDPs by taking advantage of belief space sparsity. We reduce the dimensionality of the belief space by exponential family Principal Components Analysis [1], which allows us to turn the sparse, highdimensional belief space into a compact, low-dimensional representation in terms of learned features of the belief state. We then plan directly on the low-dimensional belief features. By planning in a low-dimensional space, we can find policies for POMDPs that are orders of magnitude larger than can be handled by conventional techniques. We demonstrate the use of this algorithm on a synthetic problem and also on a mobile robot navigation task.


A Formulation for Minimax Probability Machine Regression

Neural Information Processing Systems

We formulate the regression problem as one of maximizing the minimum probability, symbolized by Ω, that future predicted outputs of the regression model will be within some ε bound of the true regression function. Our formulation is unique in that we obtain a direct estimate of this lower probability bound Ω. The proposed framework, minimax probability machine regression (MPMR), is based on the recently described minimax probability machine classification algorithm [Lanckriet et al.] and uses Mercer Kernels to obtain nonlinear regression models. MPMR is tested on both toy and real world data, verifying the accuracy of the Ω bound, and the efficacy of the regression models.


Discriminative Binaural Sound Localization

Neural Information Processing Systems

Time difference of arrival (TDOA) is commonly used to estimate the azimuth of a source in a microphone array. The most common methods to estimate TDOA are based on finding extrema in generalized crosscorrelation waveforms. In this paper we apply microphone array techniques to a manikin head. By considering the entire cross-correlation waveform we achieve azimuth prediction accuracy that exceeds extrema locating methods. We do so by quantizing the azimuthal angle and treating the prediction problem as a multiclass categorization task. We demonstrate the merits of our approach by evaluating the various approaches on Sony's AIBO robot.


An Impossibility Theorem for Clustering

Neural Information Processing Systems

Although the study of clustering is centered around an intuitively compelling goal, it has been very difficult to develop a unified framework for reasoning about it at a technical level, and profoundly diverse approaches to clustering abound in the research community. Here we suggest a formal perspective on the difficulty in finding such a unification, in the form of an impossibility theorem: for a set of three simple properties, we show that there is no clustering function satisfying all three. Relaxations of these properties expose some of the interesting (and unavoidable) tradeoffs at work in well-studied clustering techniques such as single-linkage, sum-of-pairs, k-means, and k-median.


Kernel-Based Extraction of Slow Features: Complex Cells Learn Disparity and Translation Invariance from Natural Images

Neural Information Processing Systems

In Slow Feature Analysis (SFA [1]), it has been demonstrated that high-order invariant properties can be extracted by projecting inputs into a nonlinear space and computing the slowest changing features in this space; this has been proposed as a simple general model for learning nonlinear invariances in the visual system. However, this method is highly constrained by the curse of dimensionality which limits it to simple theoretical simulations. This paper demonstrates that by using a different but closely-related objective function for extracting slowly varying features ([2, 3]), and then exploiting the kernel trick, this curse can be avoided. Using this new method we show that both the complex cell properties of translation invariance and disparity coding can be learnt simultaneously from natural images when complex cells are driven by simple cells also learnt from the image. The notion of maximising an objective function based upon the temporal predictability of output has been progressively applied in modelling the development of invariances in the visual system.


Exact MAP Estimates by (Hyper)tree Agreement

Neural Information Processing Systems

We describe a method for computing provably exact maximum a posteriori (MAP) estimates for a subclass of problems on graphs with cycles. The basic idea is to represent the original problem on the graph with cycles as a convex combination of tree-structured problems. A convexity argument then guarantees that the optimal value of the original problem (i.e., the log probability of the MAP assignment) is upper bounded by the combined optimal values of the tree problems. We prove that this upper bound is met with equality if and only if the tree problems share an optimal configuration in common. An important implication is that any such shared configuration must also be the MAP configuration for the original problem. Next we develop a tree-reweighted max-product algorithm for attempting to find convex combinations of tree-structured problems that share a common optimum. We give necessary and sufficient conditions for a fixed point to yield the exact MAP estimate. An attractive feature of our analysis is that it generalizes naturally to convex combinations of hypertree-structured distributions.


Shape Recipes: Scene Representations that Refer to the Image

Neural Information Processing Systems

The goal of low-level vision is to estimate an underlying scene, given an observed image. Real-world scenes (eg, albedos or shapes) can be very complex, conventionally requiring high dimensional representations which are hard to estimate and store. We propose a low-dimensional representation, called a scene recipe, that relies on the image itself to describe the complex scene configurations. Shape recipes are an example: these are the regression coefficients that predict the bandpassed shape from image data. We describe the benefits of this representation, and show two uses illustrating their properties: (1) we improve stereo shape estimates by learning shape recipes at low resolution and applying them at full resolution; (2) Shape recipes implicitly contain information about lighting and materials and we use them for material segmentation.


Linear Combinations of Optic Flow Vectors for Estimating Self-Motion - a Real-World Test of a Neural Model

Neural Information Processing Systems

The tangential neurons in the fly brain are sensitive to the typical optic flow patterns generated during self-motion. In this study, we examine whether a simplified linear model of these neurons can be used to estimate self-motion from the optic flow. We present a theory for the construction of an estimator consisting of a linear combination of optic flow vectors that incorporates prior knowledge both about the distance distribution of the environment, and about the noise and self-motion statistics of the sensor. The estimator is tested on a gantry carrying an omnidirectional vision sensor. The experiments show that the proposed approach leads to accurate and robust estimates of rotation rates, whereas translation estimates turn out to be less reliable.


Incremental Gaussian Processes

Neural Information Processing Systems

In this paper, we consider Tipping's relevance vector machine (RVM) [1] and formalize an incremental training strategy as a variant of the expectation-maximization (EM) algorithm that we call Subspace EM (SSEM). Working with a subset of active basis functions, the sparsity of the RVM solution will ensure that the number of basis functions and thereby the computational complexity is kept low. We also introduce a mean field approach to the intractable classification model that is expected to give a very good approximation to exact Bayesian inference and contains the Laplace approximation as a special case.