taxnodes:Technology: Overviews
Editorial Introduction to this Special Issue of AI Magazine: The Eleventh Innovative Applications of Artificial Intelligence Conference (IAAI-99)
Uthurusamy, Ramasamy, Hayes-Roth, Barbara
The Innovative Applications of Artificial Intelligence Conference was held 18-22 July 1999 in Orlando, Florida. Ramasamy Uthurusamy was the Program Chair and Barbara Hayes-Roth was the Program Co-Chair. Although all the IAAI-99 papers and talks were certainly interesting and important, we present in this special issue of AI Magazine only a select subset because of page and other limitations. We include two invited talks and four applications as a snapshot of IAAI-99.
The Road Ahead for Knowledge Management: An AI Perspective
Smith, Reid G., Farquhar, Adam
Enabling organizations to capture, share, and apply the collective experience and know-how of their people is seen as fundamental to competing in the knowledge economy. As a result, there has been a wave of enthusiasm and activity centered on knowledge management. To make progress in this area, issues of technology, process, people, and content must be addressed. In this article, we develop a road map for knowledge management. It begins with an assessment of the current state of the practice, using examples drawn from our experience at Schlumberger. It then sketches the possible evolution of technology and practice over a 10-year period. Along the way, we highlight ways in which AI technology, present and future, can be applied in knowledge management systems.
Probabilistic Algorithms in Robotics
This article describes a methodology for programming robots known as probabilistic robotics. The probabilistic paradigm pays tribute to the inherent uncertainty in robot perception, relying on explicit representations of uncertainty when determining what to do. This article surveys some of the progress in the field, using in-depth examples to illustrate some of the nuts and bolts of the basic approach. My central conjecture is that the probabilistic approach to robotics scales better to complex real-world applications than approaches that ignore a robot's uncertainty.
Agent Assistants for Team Analysis
Tambe, Milind, Raines, Taylor, Marsella, Stacy
With the growing importance of multiagent team-work, tools that can help humans analyze, evaluate, and understand team behaviors are also becoming increasingly important. To this end, we are creating isaac, a team analyst agent for post hoc, offline agent-team analysis. ISAAC'S novelty stems from a key design constraint that arises in team analysis: Multiple types of models of team behavior are necessary to analyze different granularities of team events, including agent actions, interactions, and global performance. These heterogeneous team models are automatically acquired by machine learning over teams' external behavior traces, where the specific learning techniques are tailored to the particular model learned. Additionally, ISAAC uses multiple presentation techniques that can aid human understanding of the analyses. This article presents ISAAC'S general conceptual framework and its application in the RoboCup soccer domain, where ISAAC was awarded the RoboCup Scientific Challenge Award.
The CMUnited-99 Champion Simulator Team
Stone, Peter, Riley, Patrick, Veloso, Manuela M.
The CMUNITED-99 simulator team became the 1999 RoboCup simulator league champion by winning all 8 of its games, outscoring opponents by a combined score of 110-0. CMUNITED-99 builds on the successful CMUNITED-98 implementation but also improves on it in many ways. This article gives an overview of CMUNITED-99's improvements over CMUNITED-98.
CMUNITED-98 Simulator Team
Stone, Peter, Veloso, Manuela M., Riley, Patrick
The CMUNITED-98 simulator team became the 1998 RoboCup simulator league champion by winning all 8 of its games, outscoring opponents by a total of 66-0. CMUNITED-98 builds on the successful cmunited-97 implementation but also improves on it in many ways. This article gives an overview of the cmunited-98 agent skill and multiagent coordination strategies, emphasizing the recent improvements.
Planning Graph as a (Dynamic) CSP: Exploiting EBL, DDB and other CSP Search Techniques in Graphplan
This paper reviews the connections between Graphplan's planning-graph and the dynamic constraint satisfaction problem and motivates the need for adapting CSP search techniques to the Graphplan algorithm. It then describes how explanation based learning, dependency directed backtracking, dynamic variable ordering, forward checking, sticky values and random-restart search strategies can be adapted to Graphplan. Empirical results are provided to demonstrate that these augmentations improve Graphplan's performance significantly (up to 1000x speedups) on several benchmark problems. Special attention is paid to the explanation-based learning and dependency directed backtracking techniques as they are empirically found to be most useful in improving the performance of Graphplan.
A Survey of Research in Distributed, Continual Planning
desJardins, Marie E., Durfee, Edmund H., Charles L. Ortiz, Jr., Wolverton, Michael J.
Planning and executing the resulting plans in a dynamic environment implies a continual approach in which planning and execution are interleaved, uncertainty in the current and projected world state is recognized and handled appropriately, and replanning can be performed when the situation changes or planned actions fail. Furthermore, complex planning and execution problems may require multiple computational agents and human planners to collaborate on a solution. In this article, we describe a new paradigm for planning in complex, dynamic environments, which we term distributed, continual planning (DCP). We give a historical overview of research leading to the current state of the art in DCP and describe research in distributed and continual planning.