Goto

Collaborating Authors

 South Korea




Maximum Causal Tsallis Entropy Imitation Learning

Neural Information Processing Systems

In this paper, we propose a novel maximum causal Tsallis entropy (MCTE) framework for imitation learning which can efficiently learn a sparse multi-modal policy distribution from demonstrations. We provide the full mathematical analysis of the proposed framework. First, the optimal solution of an MCTE problem is shown to be a sparsemax distribution, whose supporting set can be adjusted. The proposed method has advantages over a softmax distribution in that it can exclude unnecessary actions by assigning zero probability. Second, we prove that an MCTE problem is equivalent to robust Bayes estimation in the sense of the Brier score. Third, we propose a maximum causal Tsallis entropy imitation learning (MCTEIL) algorithm with a sparse mixture density network (sparse MDN) by modeling mixture weights using a sparsemax distribution. In particular, we show that the causal Tsallis entropy of an MDN encourages exploration and efficient mixture utilization while Shannon entropy is less effective.


Learning to Specialize with Knowledge Distillation for Visual Question Answering

Neural Information Processing Systems

Visual Question Answering (VQA) is a notoriously challenging problem because it involves various heterogeneous tasks defined by questions within a unified framework. Learning specialized models for individual types of tasks is intuitively attracting but surprisingly difficult; it is not straightforward to outperform naรฏve independent ensemble approach. We present a principled algorithm to learn specialized models with knowledge distillation under a multiple choice learning (MCL) framework, where training examples are assigned dynamically to a subset of models for updating network parameters. The assigned and non-assigned models are learned to predict ground-truth answers and imitate their own base models before specialization, respectively. Our approach alleviates the limitation of data deficiency in existing MCL frameworks, and allows each model to learn its own specialized expertise without forgetting general knowledge. The proposed framework is model-agnostic and applicable to any tasks other than VQA, e.g., image classification with a large number of labels but few per-class examples, which is known to be difficult under existing MCL schemes. Our experimental results indeed demonstrate that our method outperforms other baselines for VQA and image classification.


Batch-Instance Normalization for Adaptively Style-Invariant Neural Networks

Neural Information Processing Systems

Real-world image recognition is often challenged by the variability of visual styles including object textures, lighting conditions, filter effects, etc. Although these variations have been deemed to be implicitly handled by more training data and deeper networks, recent advances in image style transfer suggest that it is also possible to explicitly manipulate the style information. Extending this idea to general visual recognition problems, we present Batch-Instance Normalization (BIN) to explicitly normalize unnecessary styles from images. Considering certain style features play an essential role in discriminative tasks, BIN learns to selectively normalize only disturbing styles while preserving useful styles. The proposed normalization module is easily incorporated into existing network architectures such as Residual Networks, and surprisingly improves the recognition performance in various scenarios. Furthermore, experiments verify that BIN effectively adapts to completely different tasks like object classification and style transfer, by controlling the tradeoff between preserving and removing style variations. BIN can be implemented with only a few lines of code using popular deep learning frameworks.


Learning Infinitesimal Generators of Continuous Symmetries from Data

Neural Information Processing Systems

Exploiting symmetry inherent in data can significantly improve the sample efficiency of a learning procedure and the generalization of learned models. When data clearly reveals underlying symmetry, leveraging this symmetry can naturally inform the design of model architectures or learning strategies. Yet, in numerous real-world scenarios, identifying the specific symmetry within a given data distribution often proves ambiguous. To tackle this, some existing works learn symmetry in a data-driven manner, parameterizing and learning expected symmetry through data. However, these methods often rely on explicit knowledge, such as pre-defined Lie groups, which are typically restricted to linear or affine transformations.


Reparameterization Gradient for Non-differentiable Models

Neural Information Processing Systems

We present a new algorithm for stochastic variational inference that targets at models with non-differentiable densities. One of the key challenges in stochastic variational inference is to come up with a low-variance estimator of the gradient of a variational objective. We tackle the challenge by generalizing the reparameterization trick, one of the most effective techniques for addressing the variance issue for differentiable models, so that the trick works for non-differentiable models as well. Our algorithm splits the space of latent variables into regions where the density of the variables is differentiable, and their boundaries where the density may fail to be differentiable. For each differentiable region, the algorithm applies the standard reparameterization trick and estimates the gradient restricted to the region. For each potentially non-differentiable boundary, it uses a form of manifold sampling and computes the direction for variational parameters that, if followed, would increase the boundary's contribution to the variational objective. The sum of all the estimates becomes the gradient estimate of our algorithm. Our estimator enjoys the reduced variance of the reparameterization gradient while remaining unbiased even for non-differentiable models. The experiments with our preliminary implementation confirm the benefit of reduced variance and unbiasedness.


A Max-Min Entropy Framework for Reinforcement Learning

Neural Information Processing Systems

In this paper, we propose a max-min entropy framework for reinforcement learning (RL) to overcome the limitation of the soft actor-critic (SAC) algorithm implementing the maximum entropy RL in model-free sample-based learning. Whereas the maximum entropy RL guides learning for policies to reach states with high entropy in the future, the proposed max-min entropy framework aims to learn to visit states with low entropy and maximize the entropy of these low-entropy states to promote better exploration. For general Markov decision processes (MDPs), an efficient algorithm is constructed under the proposed max-min entropy framework based on disentanglement of exploration and exploitation. Numerical results show that the proposed algorithm yields drastic performance improvement over the current state-of-the-art RL algorithms.


Unsupervised Representation Transfer for Small Networks: I Believe I Can Distill On-the-Fly

Neural Information Processing Systems

A current remarkable improvement of unsupervised visual representation learning is based on heavy networks with large-batch training. While recent methods have greatly reduced the gap between supervised and unsupervised performance of deep models such as ResNet-50, this development has been relatively limited for small models. In this work, we propose a novel unsupervised learning framework for small networks that combines deep self-supervised representation learning and knowledge distillation within one-phase training. In particular, a teacher model is trained to produce consistent cluster assignments between different views of the same image. Simultaneously, a student model is encouraged to mimic the prediction of on-the-fly self-supervised teacher. For effective knowledge transfer, we adopt the idea of domain classifier so that student training is guided by discriminative features invariant to the representational space shift between teacher and student. We also introduce a network driven multi-view generation paradigm to capture rich feature information contained in the network itself. Extensive experiments show that our student models surpass state-of-the-art offline distilled networks even from stronger self-supervised teachers as well as top-performing self-supervised models. Notably, our ResNet-18, trained with ResNet-50 teacher, achieves 68.3% ImageNet Top-1 accuracy on frozen feature linear evaluation, which is only 1.5% below the supervised baseline.


Regret in Online Recommendation Systems

Neural Information Processing Systems

This paper proposes a theoretical analysis of recommendation systems in an online setting, where items are sequentially recommended to users over time. In each round, a user, randomly picked from a population of m users, requests a recommendation. The decision-maker observes the user and selects an item from a catalogue of n items. Importantly, an item cannot be recommended twice to the same user. The probabilities that a user likes each item are unknown. The performance of the recommendation algorithm is captured through its regret, considering as a reference an Oracle algorithm aware of these probabilities. We investigate various structural assumptions on these probabilities: we derive for each structure regret lower bounds, and devise algorithms achieving these limits. Interestingly, our analysis reveals the relative weights of the different components of regret: the component due to the constraint of not presenting the same item twice to the same user, that due to learning the chances users like items, and finally that arising when learning the underlying structure.