Goto

Collaborating Authors

 Neural Information Processing Systems


4Real: Towards Photorealistic 4D Scene Generation via Video Diffusion Models

Neural Information Processing Systems

Existing dynamic scene generation methods mostly rely on distilling knowledge from pre-trained 3D generative models, which are typically fine-tuned on synthetic object datasets. As a result, the generated scenes are often object-centric and lack photorealism. To address these limitations, we introduce a novel pipeline designed for photorealistic text-to-4D scene generation, discarding the dependency on multi-view generative models and instead fully utilizing video generative models trained on diverse real-world datasets. Our method begins by generating a reference video using the video generation model. We then learn the canonical 3D representation of the video using a freeze-time video, delicately generated from the reference video. To handle inconsistencies in the freeze-time video, we jointly learn a per-frame deformation to model these imperfections. We then learn the temporal deformation based on the canonical representation to capture dynamic interactions in the reference video.


Continuous Spatiotemporal Events Decoupling through Spike-based Bayesian Computation 2 1

Neural Information Processing Systems

Numerous studies have demonstrated that the cognitive processes of the human brain can be modeled using the Bayes theorem for probabilistic inference of the external world. Spiking neural networks (SNNs), capable of performing Bayesian computation with greater physiological interpretability, offer a novel approach to distributed information processing in the cortex. However, applying these models to real-world scenarios to harness the advantages of brain-like computation remains a challenge. Recently, bio-inspired sensors with high dynamic range and ultra-high temporal resolution have been widely used in extreme vision scenarios. Event streams, generated by various types of motion, represent spatiotemporal data.


Large Scale Transfer Learning for Tabular Data via Language Modeling Josh Gardner, Juan C. Perdomo # Ludwig Schmidt

Neural Information Processing Systems

Tabular data - structured, heterogeneous, spreadsheet-style data with rows and columns - is widely used in practice across many domains. However, while recent foundation models have reduced the need for developing task-specific datasets and predictors in domains such as language modeling and computer vision, this transfer learning paradigm has not had similar impact in the tabular domain.


Acceleration via Symplectic Discretization of High-Resolution Differential Equations

Neural Information Processing Systems

We study first-order optimization algorithms obtained by discretizing ordinary differential equations (ODEs) corresponding to Nesterov's accelerated gradient methods (NAGs) and Polyak's heavy-ball method. We consider three discretization schemes: symplectic Euler (S), explicit Euler (E) and implicit Euler (I) schemes. We show that the optimization algorithm generated by applying the symplectic scheme to a high-resolution ODE proposed by Shi et al. [2018] achieves the accelerated rate for minimizing both strongly convex functions and convex functions. On the other hand, the resulting algorithm either fails to achieve acceleration or is impractical when the scheme is implicit, the ODE is low-resolution, or the scheme is explicit.


An Accelerated Gradient Method for Convex Smooth Simple Bilevel Optimization ECE Department UT Austin

Neural Information Processing Systems

In this paper, we focus on simple bilevel optimization problems, where we minimize a convex smooth objective function over the optimal solution set of another convex smooth constrained optimization problem. We present a novel bilevel optimization method that locally approximates the solution set of the lower-level problem using a cutting plane approach and employs an accelerated gradient-based update to reduce the upper-level objective function over the approximated solution set. We measure the performance of our method in terms of suboptimality and infeasibility errors and provide non-asymptotic convergence guarantees for both error criteria.


A Motion-aware Spatio-temporal Graph for Video Salient Object Ranking Hao Chen 1,2, and Yongjian Deng School of Computer Science and Engineering, Southeast University, Nanjing, China

Neural Information Processing Systems

Video salient object ranking aims to simulate the human attention mechanism by dynamically prioritizing the visual attraction of objects in a scene over time. Despite its numerous practical applications, this area remains underexplored. In this work, we propose a graph model for video salient object ranking. This graph simultaneously explores multi-scale spatial contrasts and intra-/inter-instance temporal correlations across frames to extract diverse spatio-temporal saliency cues. It has two advantages: 1. Unlike previous methods that only perform global inter-frame contrast or compare all proposals across frames globally, we explicitly model the motion of each instance by comparing its features with those in the same spatial region in adjacent frames, thus obtaining more accurate motion saliency cues.


EM Distillation for One-step Diffusion Models

Neural Information Processing Systems

While diffusion models can learn complex distributions, sampling requires a computationally expensive iterative process. Existing distillation methods enable efficient sampling, but have notable limitations, such as performance degradation with very few sampling steps, reliance on training data access, or mode-seeking optimization that may fail to capture the full distribution. We propose EM Distillation (EMD), a maximum likelihood-based approach that distills a diffusion model to a one-step generator model with minimal loss of perceptual quality. Our approach is derived through the lens of Expectation-Maximization (EM), where the generator parameters are updated using samples from the joint distribution of the diffusion teacher prior and inferred generator latents. We develop a reparametrized sampling scheme and a noise cancellation technique that together stabilize the distillation process. We further reveal an interesting connection of our method with existing methods that minimize mode-seeking KL. EMD outperforms existing one-step generative methods in terms of FID scores on ImageNet-64 and ImageNet-128, and compares favorably with prior work on distilling text-to-image diffusion models.


Reliable Learning of Halfspaces under Gaussian Marginals

Neural Information Processing Systems

We study the problem of PAC learning halfspaces in the reliable agnostic model of Kalai et al. (2012). The reliable PAC model captures learning scenarios where one type of error is costlier than the others.


The Well: a Large-Scale Collection of Diverse Physics Simulations for Machine Learning Ruben Ohana 1,2,, Lucas Meyer 1, Rudy Morel

Neural Information Processing Systems

Machine learning based surrogate models offer researchers powerful tools for accelerating simulation-based workflows. However, as standard datasets in this space often cover small classes of physical behavior, it can be difficult to evaluate the efficacy of new approaches. To address this gap, we introduce the Well: a large-scale collection of datasets containing numerical simulations of a wide variety of spatiotemporal physical systems. The Well draws from domain experts and numerical software developers to provide 15TB of data across 16 datasets covering diverse domains such as biological systems, fluid dynamics, acoustic scattering, as well as magneto-hydrodynamic simulations of extra-galactic fluids or supernova explosions. These datasets can be used individually or as part of a broader benchmark suite. To facilitate usage of the Well, we provide a unified PyTorch interface for training and evaluating models. We demonstrate the function of this library by introducing example baselines that highlight the new challenges posed by the complex dynamics of the Well.


FreqBlender: Enhancing DeepFake Detection by Blending Frequency Knowledge Yuezun Li

Neural Information Processing Systems

Generating synthetic fake faces, known as pseudo-fake faces, is an effective way to improve the generalization of DeepFake detection. Existing methods typically generate these faces by blending real or fake faces in spatial domain. While these methods have shown promise, they overlook the simulation of frequency distribution in pseudo-fake faces, limiting the learning of generic forgery traces in-depth. To address this, this paper introduces FreqBlender, a new method that can generate pseudo-fake faces by blending frequency knowledge. Concretely, we investigate the major frequency components and propose a Frequency Parsing Network to adaptively partition frequency components related to forgery traces. Then we blend this frequency knowledge from fake faces into real faces to generate pseudo-fake faces. Since there is no ground truth for frequency components, we describe a dedicated training strategy by leveraging the inner correlations among different frequency knowledge to instruct the learning process. Experimental results demonstrate the effectiveness of our method in enhancing DeepFake detection, making it a potential plug-and-play strategy for other methods.