Goto

Collaborating Authors

 Neural Information Processing Systems


XNAS: Neural Architecture Search with Expert Advice

Neural Information Processing Systems

This paper introduces a novel optimization method for differential neural architecture search, based on the theory of prediction with expert advice. Its optimization criterion is well fitted for an architecture-selection, i.e., it minimizes the regret incurred by a sub-optimal selection of operations. Unlike previous search relaxations, that require hard pruning of architectures, our method is designed to dynamically wipe out inferior architectures and enhance superior ones. It achieves an optimal worst-case regret bound and suggests the use of multiple learning-rates, based on the amount of information carried by the backward gradients. Experiments show that our algorithm achieves a strong performance over several image classification datasets. Specifically, it obtains an error rate of 1.6% for CIFAR-10, 23.9% for ImageNet under mobile settings, and achieves state-of-the-art results on three additional datasets.


Scalable Early Childhood Reading Performance Prediction Zanming Huang 1

Neural Information Processing Systems

Models for student reading performance can empower educators and institutions to proactively identify at-risk students, thereby enabling early and tailored instructional interventions. However, there are no suitable publicly available educational datasets for modeling and predicting future reading performance. In this work, we introduce the Enhanced Core Reading Instruction (ECRI) dataset, a novel largescale longitudinal tabular dataset collected across 44 schools with 6,916 students and 172 teachers. We leverage the dataset to empirically evaluate the ability of state-of-the-art machine learning models to recognize early childhood educational patterns in multivariate and partial measurements. Specifically, we demonstrate a simple self-supervised strategy in which a Multi-Layer Perception (MLP) network is pre-trained over masked inputs to outperform several strong baselines while generalizing over diverse educational settings. To facilitate future developments in precise modeling and responsible use of models for individualized and early intervention strategies, our data and code are available at https://ecri-data.github.io/.


Secret Collusion among AI Agents: Multi-Agent Deception via Steganography Mikhail Baranchuk 2 Martin Strohmeier 3

Neural Information Processing Systems

Recent advancements in generative AI suggest the potential for large-scale interaction between autonomous agents and humans across platforms such as the internet. While such interactions could foster productive cooperation, the ability of AI agents to circumvent security oversight raises critical multi-agent security problems, particularly in the form of unintended information sharing or undesirable coordination. In our work, we establish the subfield of secret collusion, a form of multi-agent deception, in which two or more agents employ steganographic methods to conceal the true nature of their interactions, be it communicative or otherwise, from oversight. We propose a formal threat model for AI agents communicating steganographically and derive rigorous theoretical insights about the capacity and incentives of large language models (LLMs) to perform secret collusion, in addition to the limitations of threat mitigation measures. We complement our findings with empirical evaluations demonstrating rising steganographic capabilities in frontier single and multi-agent LLM setups and examining potential scenarios where collusion may emerge, revealing limitations in countermeasures such as monitoring, paraphrasing, and parameter optimization. Our work is the first to formalize and investigate secret collusion among frontier foundation models, identifying it as a critical area in AI Safety and outlining a comprehensive research agenda to mitigate future risks of collusion between generative AI systems.


00989c20ff1386dc386d8124ebcba1a5-AuthorFeedback.pdf

Neural Information Processing Systems

We thank all the reviewers for their helpful feedback and positive view of our work. We believe that these additions address all of the main reviewer concerns. The actions are "turn left," "turn right," Hausman et al. is discussed at line 95 of the The plain TE only uses the imitation learning loss. The Duan et al. architecture fails in In our results we use behavioral cloning, and we plan to try IRL methods such as GAIL in future work. The Duan et al. architecture performs well in this


Graph Edit Distance with General Costs Using Neural Set Divergence Eeshaan Jain Indradyumna Roy

Neural Information Processing Systems

Graph Edit Distance (GED) measures the (dis-)similarity between two given graphs, in terms of the minimum-cost edit sequence that transforms one graph to the other. However, the exact computation of GED is NP-Hard, which has recently motivated the design of neural methods for GED estimation. However, they do not explicitly account for edit operations with different costs.


Self-Play Fine-Tuning of Diffusion Models for Text-to-Image Generation Huizhuo Yuan Zixiang Chen Kaixuan Ji

Neural Information Processing Systems

Fine-tuning Diffusion Models remains an underexplored frontier in generative artificial intelligence (GenAI), especially when compared with the remarkable progress made in fine-tuning Large Language Models (LLMs). While cutting-edge diffusion models such as Stable Diffusion (SD) and SDXL rely on supervised fine-tuning, their performance inevitably plateaus after seeing a certain volume of data. Recently, reinforcement learning (RL) has been employed to fine-tune diffusion models with human preference data, but it requires at least two images ("winner" and "loser" images) for each text prompt. In this paper, we introduce an innovative technique called self-play fine-tuning for diffusion models (SPIN-Diffusion), where the diffusion model engages in competition with its earlier versions, facilitating an iterative self-improvement process. Our approach offers an alternative to conventional supervised fine-tuning and RL strategies, significantly improving both model performance and alignment. Our experiments on the Picka-Pic dataset reveal that SPIN-Diffusion outperforms the existing supervised finetuning method in aspects of human preference alignment and visual appeal right from its first iteration. By the second iteration, it exceeds the performance of RLHF-based methods across all metrics, achieving these results with less data.


Constant-Expansion Suffices for Compressed Sensing with Generative Priors

Neural Information Processing Systems

Generative neural networks have been empirically found very promising in providing effective structural priors for compressed sensing, since they can be trained to span low-dimensional data manifolds in high-dimensional signal spaces. Despite the non-convexity of the resulting optimization problem, it has also been shown theoretically that, for neural networks with random Gaussian weights, a signal in the range of the network can be efficiently, approximately recovered from a few noisy measurements. However, a major bottleneck of these theoretical guarantees is a network expansivity condition: that each layer of the neural network must be larger than the previous by a logarithmic factor. Our main contribution is to break this strong expansivity assumption, showing that constant expansivity suffices to get efficient recovery algorithms, besides it also being information-theoretically necessary. To overcome the theoretical bottleneck in existing approaches we prove a novel uniform concentration theorem for random functions that might not be Lipschitz but satisfy a relaxed notion which we call "pseudo-Lipschitzness." Using this theorem we can show that a matrix concentration inequality known as the Weight Distribution Condition (WDC), which was previously only known to hold for Gaussian matrices with logarithmic aspect ratio, in fact holds for constant aspect ratios too. Since WDC is a fundamental matrix concentration inequality in the heart of all existing theoretical guarantees on this problem, our tighter bound immediately yields improvements in all known results in the literature on compressed sensing with deep generative priors, including one-bit recovery, phase retrieval, and more.


On Affine Homotopy between Language Encoders Robin S. M. Chan

Neural Information Processing Systems

Pre-trained language encoders--functions that represent text as vectors--are an integral component of many NLP tasks. We tackle a natural question in language encoder analysis: What does it mean for two encoders to be similar? We contend that a faithful measure of similarity needs to be intrinsic, that is, task-independent, yet still be informative of extrinsic similarity--the performance on downstream tasks. It is common to consider two encoders similar if they are homotopic, i.e., if they can be aligned through some transformation.


State Chrono Representation for Enhancing Generalization in Reinforcement Learning

Neural Information Processing Systems

In reinforcement learning with image-based inputs, it is crucial to establish a robust and generalizable state representation. Recent advancements in metric learning, such as deep bisimulation metric approaches, have shown promising results in learning structured low-dimensional representation space from pixel observations, where the distance between states is measured based on task-relevant features. However, these approaches face challenges in demanding generalization tasks and scenarios with non-informative rewards. This is because they fail to capture sufficient long-term information in the learned representations. To address these challenges, we propose a novel State Chrono Representation (SCR) approach. SCR augments state metric-based representations by incorporating extensive temporal information into the update step of bisimulation metric learning. It learns state distances within a temporal framework that considers both future dynamics and cumulative rewards over current and long-term future states. Our learning strategy effectively incorporates future behavioral information into the representation space without introducing a significant number of additional parameters for modeling dynamics. Extensive experiments conducted in DeepMind Control and Meta-World environments demonstrate that SCR achieves better performance comparing to other recent metric-based methods in demanding generalization tasks.


OmniJARVIS Unified Vision-Language-Action Tokenization Enables Open-World Instruction Following Agents

Neural Information Processing Systems

This paper presents OmniJARVIS, a novel Vision-Language-Action (VLA) model for open-world instruction-following agents in Minecraft. Compared to prior works that either emit textual goals to separate controllers or produce the control command directly, OmniJARVIS seeks a different path to ensure both strong reasoning and efficient decision-making capabilities via unified tokenization of multimodal interaction data.