Not enough data to create a plot.
Try a different view from the menu above.
Neural Information Processing Systems
Localize, Understand, Collaborate: Semantic-Aware Dragging via Intention Reasoner
Flexible and accurate drag-based editing is a challenging task that has recently garnered significant attention. Current methods typically model this problem as automatically learning "how to drag" through point dragging and often produce one deterministic estimation, which presents two key limitations: 1) Overlooking the inherently ill-posed nature of drag-based editing, where multiple results may correspond to a given input, as illustrated in Figure 1; 2) Ignoring the constraint of image quality, which may lead to unexpected distortion. To alleviate this, we propose LucidDrag, which shifts the focus from "how to drag" to "what-then-how" paradigm. LucidDrag comprises an intention reasoner and a collaborative guidance sampling mechanism. The former infers several optimal editing strategies, identifying what content and what semantic direction to be edited. Based on the former, the latter addresses "how to drag" by collaboratively integrating existing editing guidance with the newly proposed semantic guidance and quality guidance. Specifically, semantic guidance is derived by establishing a semantic editing direction based on reasoned intentions, while quality guidance is achieved through classifier guidance using an image fidelity discriminator. Both qualitative and quantitative comparisons demonstrate the superiority of LucidDrag over previous methods.
Supplementary Material A Derivations and Further Technical Details 15 A.1 Proof of Proposition 1
Following Haarnoja et al. [13], we can now rewrite Equation (A.4) as [ ( J A.3 Regularized Maximum Likelihood Estimation To address the collapse in predictive variance away from the offline dataset under MLE training seen in Figure 1, Wu et al. [51] in practice augment the usual MLE loss with an entropy bonus as follows: ฯ Whilst entropy regularization partially mitigates the collapse of predictive variance away from the expert demonstrations, we still observe the wrong trend similar to Figure 1 with predictive variances high near the expert demonstrations and low on unseen data. The variance surface also becomes more poorly behaved, with "islands" of high predictive variance appearing away from the data. Figure 12 shows the predictive variances of behavioral policies trained on expert demonstrations for the "door-binary-v0" environment with varying Tikhonov regularization coefficients ฮป. Similarly, Tikhonov regularization does not resolve the issue with calibration of uncertainties. We also observe that too high a regularization strength causes the model to underfit to the variances of the data.
On Pathologies in KL-Regularized Reinforcement Learning from Expert Demonstrations
KL-regularized reinforcement learning from expert demonstrations has proved successful in improving the sample efficiency of deep reinforcement learning algorithms, allowing them to be applied to challenging physical real-world tasks. However, we show that KL-regularized reinforcement learning with behavioral reference policies derived from expert demonstrations can suffer from pathological training dynamics that can lead to slow, unstable, and suboptimal online learning. We show empirically that the pathology occurs for commonly chosen behavioral policy classes and demonstrate its impact on sample efficiency and online policy performance. Finally, we show that the pathology can be remedied by non-parametric behavioral reference policies and that this allows KL-regularized reinforcement learning to significantly outperform state-of-the-art approaches on a variety of challenging locomotion and dexterous hand manipulation tasks.
Supplementary Material for: Parametrized Quantum Policies for Reinforcement Learning
Outline The Supplementary Material is organized as follows. In Appendix D, we give a specification of the environments considered in our numerical simulations, as well the hyperparameters we used to train all RL agents. In Appendix E, we present additional plots and numerical simulations that help our understanding and visualization of PQC polices. In Appendix F, we give a succinct description of the DLP classification task of Liu et al. In Appendices G to I, we prove our main Theorem 1 on learning separations in DLP environments.
CoSy: Evaluating Textual Explanations of Neurons
A crucial aspect of understanding the complex nature of Deep Neural Networks (DNNs) is the ability to explain learned concepts within their latent representations. While methods exist to connect neurons to human-understandable textual descriptions, evaluating the quality of these explanations is challenging due to the lack of a unified quantitative approach.
Fair Sequential Selection Using Supervised Learning Models
We consider a selection problem where sequentially arrived applicants apply for a limited number of positions/jobs. At each time step, a decision maker accepts or rejects the given applicant using a pre-trained supervised learning model until all the vacant positions are filled. In this paper, we discuss whether the fairness notions (e.g., equal opportunity, statistical parity, etc.) that are commonly used in classification problems are suitable for the sequential selection problems. In particular, we show that even with a pre-trained model that satisfies the common fairness notions, the selection outcomes may still be biased against certain demographic groups. This observation implies that the fairness notions used in classification problems are not suitable for a selection problem where the applicants compete for a limited number of positions. We introduce a new fairness notion, "Equal Selection (ES)," suitable for sequential selection problems and propose a post-processing approach to satisfy the ES fairness notion. We also consider a setting where the applicants have privacy concerns, and the decision maker only has access to the noisy version of sensitive attributes. In this setting, we can show that the perfect ES fairness can still be attained under certain conditions.
Logical Activation Functions: Logit-space equivalents of Probabilistic Boolean Operators, Jason d'Eon
The choice of activation functions and their motivation is a long-standing issue within the neural network community. Neuronal representations within artificial neural networks are commonly understood as logits, representing the log-odds score of presence of features within the stimulus. We derive logit-space operators equivalent to probabilistic Boolean logic-gates AND, OR, and XNOR for independent probabilities. Such theories are important to formalize more complex dendritic operations in real neurons, and these operations can be used as activation functions within a neural network, introducing probabilistic Boolean-logic as the core operation of the neural network. Since these functions involve taking multiple exponents and logarithms, they are computationally expensive and not well suited to be directly used within neural networks.
Improving Few-Shot Generalization by Exploring and Exploiting Auxiliary Data
Few-shot learning is valuable in many real-world applications, but learning a generalizable model without overfitting to the few labeled datapoints is challenging. In this work, we focus on Few-shot Learning with Auxiliary Data (FLAD), a training paradigm that assumes access to auxiliary data during few-shot learning in hopes of improving generalization. Previous works have proposed automated methods for mixing auxiliary and target data, but these methods typically scale linearly (or worse) with the number of auxiliary datasets, limiting their practicality. In this work we relate FLAD to the explore-exploit dilemma that is central to the multi-armed bandit setting and derive algorithms whose computational complexity is independent of the number of auxiliary datasets, allowing us to scale to 100 more auxiliary datasets than prior methods. We propose two algorithms - EXP3-FLAD and UCB1-FLAD - and compare them with prior FLAD methods that either explore or exploit, finding that the combination of exploration and exploitation is crucial. Through extensive experimentation we find that our methods outperform all pre-existing FLAD methods by 4% and lead to the first 3 billion parameter language models that outperform the 175 billion parameter GPT-3. Overall, our work suggests that the discovery of better, more efficient mixing strategies for FLAD may provide a viable path towards substantially improving generalization in few-shot learning. All of our code is available at github.com/alon-albalak/FLAD.
On Memorization in Probabilistic Deep Generative Models
Gerrit J.J. van den Burg, Christopher K.I. Williams
Recent advances in deep generative models have led to impressive results in a variety of application domains. Motivated by the possibility that deep learning models might memorize part of the input data, there have been increased efforts to understand how memorization arises. In this work, we extend a recently proposed measure of memorization for supervised learning (Feldman, 2019) to the unsupervised density estimation problem and adapt it to be more computationally efficient. Next, we present a study that demonstrates how memorization can occur in probabilistic deep generative models such as variational autoencoders. This reveals that the form of memorization to which these models are susceptible differs fundamentally from mode collapse and overfitting. Furthermore, we show that the proposed memorization score measures a phenomenon that is not captured by commonly-used nearest neighbor tests. Finally, we discuss several strategies that can be used to limit memorization in practice. Our work thus provides a framework for understanding problematic memorization in probabilistic generative models.
Local Hyper-Flow Diffusion
Recently, hypergraphs have attracted a lot of attention due to their ability to capture complex relations among entities. The insurgence of hypergraphs has resulted in data of increasing size and complexity that exhibit interesting small-scale and local structure, e.g., small-scale communities and localized node-ranking around a given set of seed nodes. Popular and principled ways to capture the local structure are the local hypergraph clustering problem and the related seed set expansion problem. In this work, we propose the first local diffusion method that achieves edge-sizeindependent Cheeger-type guarantee for the problem of local hypergraph clustering while applying to a rich class of higher-order relations that covers a number of previously studied special cases.