Supplementary Material for: Parametrized Quantum Policies for Reinforcement Learning
–Neural Information Processing Systems
Outline The Supplementary Material is organized as follows. In Appendix D, we give a specification of the environments considered in our numerical simulations, as well the hyperparameters we used to train all RL agents. In Appendix E, we present additional plots and numerical simulations that help our understanding and visualization of PQC polices. In Appendix F, we give a succinct description of the DLP classification task of Liu et al. In Appendices G to I, we prove our main Theorem 1 on learning separations in DLP environments.
Neural Information Processing Systems
May-23-2025, 12:38:21 GMT
- Technology: