The Relevance Vector Machine
–Neural Information Processing Systems
The support vector machine (SVM) is a state-of-the-art technique for regression and classification, combining excellent generalisation properties with a sparse kernel representation. However, it does suffer from a number of disadvantages, notably the absence of probabilistic outputs,the requirement to estimate a tradeoff parameter and the need to utilise'Mercer' kernel functions. In this paper we introduce the Relevance Vector Machine (RVM), a Bayesian treatment ofa generalised linear model of identical functional form to the SVM. The RVM suffers from none of the above disadvantages, and examples demonstrate that for comparable generalisation performance, theRVM requires dramatically fewer kernel functions.
Neural Information Processing Systems
Dec-31-2000