Learning to Order Things
Cohen, William W., Schapire, Robert E., Singer, Yoram
–Neural Information Processing Systems
Most previous work in inductive learning has concentrated on learning to classify. However, there are many applications in which it is desirable to order rather than classify instances. An example might be a personalized email filter that gives a priority ordering to unread mail. Here we will consider the problem of learning how to construct such orderings, given feedback in the form of preference judgments, i.e., statements that one instance should be ranked ahead of another. Such orderings could be constructed based on a learned classifier or regression model, and in fact often are.
Neural Information Processing Systems
Dec-31-1998