Modeling the Olfactory Bulb - Coupled Nonlinear Oscillators

Li, Zhaoping, Hopfield, John J.

Neural Information Processing Systems 

A mathematical model based on the bulbar anatomy and electrophysiology is described. Simulations produce a 35-60 Hz modulated activity coherent across the bulb, mimicing the observed field potentials. The decision states (for the odor information) here can be thought of as stable cycles, rather than point stable states typical of simpler neuro-computing models. Analysis and simulations show that a group of coupled nonlinear oscillators are responsible for the oscillatory activities determined by the odor input, andthat the bulb, with appropriate inputs from higher centers, can enhance or suppress the sensitivity to partiCUlar odors. The model provides a framework in which to understand the transform between odor input and the bulbar output to olfactory cortex.