Neural Networks for Density Estimation

Magdon-Ismail, Malik, Atiya, Amir F.

Neural Information Processing Systems 

Although quantities such as the mean, the variance, and possibly higher order moments of a random variable have often been sufficient to characterize a particular problem, the quest for higher modeling accuracy, and for more realistic assumptions drives us towards modeling the available random variables using their probability density. This of course leads us to the problem of density estimation (see [6]). The most common approach for density estimation is the nonparametric approach, where the density is determined according to a formula involving the data points available. The most common non parametric methods are the kernel density estimator, alsoknown as the Parzen window estimator [4] and the k-nearest neighbor technique [1]. Non parametric density estimation belongs to the class of ill-posed problems in the sense that small changes in the data can lead to large changes in "To whom correspondence should be addressed.

Similar Docs  Excel Report  more

TitleSimilaritySource
None found