An Approximate, Efficient LP Solver for LP Rounding

Sridhar, Srikrishna, Wright, Stephen, Re, Christopher, Liu, Ji, Bittorf, Victor, Zhang, Ce

Neural Information Processing Systems 

Many problems in machine learning can be solved by rounding the solution of an appropriate linear program (LP). This paper shows that we can recover solutions of comparable quality by rounding an approximate LP solution instead of the exact one.These approximate LP solutions can be computed efficiently by applying a parallel stochastic-coordinate-descent method to a quadratic-penalty formulation ofthe LP. We derive worst-case runtime and solution quality guarantees of this scheme using novel perturbation and convergence analysis. Our experiments demonstrate that on such combinatorial problems as vertex cover, independent set and multiway-cut, our approximate rounding scheme is up to an order of magnitude fasterthan Cplex (a commercial LP solver) while producing solutions of similar quality.

Similar Docs  Excel Report  more

TitleSimilaritySource
None found