Asymptotic Universality for Learning Curves of Support Vector Machines

Opper, Manfred, Urbanczik, Robert

Neural Information Processing Systems 

Using methods of Statistical Physics, we investigate the rOle of model complexity in learning with support vector machines (SVMs). We show the advantages of using SVMs with kernels of infinite complexity on noisy target rules, which, in contrast to common theoretical beliefs, are found to achieve optimal generalization erroralthough the training error does not converge to the generalization error. Moreover, we find a universal asymptotics of the learning curves which only depend on the target rule but not on the SVM kernel. 1 Introduction Powerful systems for data inference, like neural networks implement complex inputoutput relationsby learning from example data. The price one has to pay for the flexibility of these models is the need to choose the proper model complexity for a given task, i.e. the system architecture which gives good generalization ability for novel data. This has become an important problem also for support vector machines [1].

Similar Docs  Excel Report  more

TitleSimilaritySource
None found