Fast deep reinforcement learning using online adjustments from the past
Hansen, Steven, Pritzel, Alexander, Sprechmann, Pablo, Barreto, Andre, Blundell, Charles
–Neural Information Processing Systems
We propose Ephemeral Value Adjusments (EVA): a means of allowing deep reinforcement learning agents to rapidly adapt to experience in their replay buffer. EVA shifts the value predicted by a neural network with an estimate of the value function found by prioritised sweeping over experience tuples from the replay buffer near the current state. EVA combines a number of recent ideas around combining episodic memory-like structures into reinforcement learning agents: slot-based storage, content-based retrieval, and memory-based planning. We show that EVA is performant on a demonstration task and Atari games.
Neural Information Processing Systems
Dec-31-2018
- Country:
- North America > Canada (0.14)
- Industry:
- Health & Medicine (0.67)
- Leisure & Entertainment > Games
- Computer Games (0.69)
- Technology: