Optimal Neural Spike Classification

Bower, James M., Atiya, Amir F.

Neural Information Processing Systems 

Using one extracellular microelectrode to record from several neurons is one approach to studying the response properties of sets of adjacent and therefore likely related neurons. However, to do this, it is necessary to correctly classify the signals generated by these different neurons. This paper considers this problem of classifying the signals in such an extracellular recording, based upon their shapes, and specifically considers the classification of signals in the case when spikes overlap temporally. Introduction How single neurons in a network of neurons interact when processing information is likely to be a fundamental question central to understanding how real neural networks compute. In the mammalian nervous system we know that spatially adjacent neurons are, in general, more likely to interact, as well as receive common inputs.

Similar Docs  Excel Report  more

TitleSimilaritySource
None found