Learning Invariant Representations of Molecules for Atomization Energy Prediction

Montavon, Grégoire, Hansen, Katja, Fazli, Siamac, Rupp, Matthias, Biegler, Franziska, Ziehe, Andreas, Tkatchenko, Alexandre, Lilienfeld, Anatole V., Müller, Klaus-Robert

Neural Information Processing Systems 

The accurate prediction of molecular energetics in chemical compound space is a crucial ingredient for rational compound design. The inherently graph-like, non-vectorial nature of molecular data gives rise to a unique and difficult machine learning problem. In this paper, we adopt a learning-from-scratch approach where quantum-mechanical molecular energies are predicted directly from the raw molecular geometry. The study suggests a benefit from setting flexible priors and enforcing invariance stochastically rather than structurally. Our results improve the state-of-the-art by a factor of almost three, bringing statistical methods one step closer to the holy grail of ''chemical accuracy''.

Similar Docs  Excel Report  more

TitleSimilaritySource
None found