Finite State Automata that Recurrent Cascade-Correlation Cannot Represent

Kremer, Stefan C.

Neural Information Processing Systems 

This paper relates the computational power of Fahlman' s Recurrent Cascade Correlation (RCC) architecture to that of fInite state automata (FSA). While some recurrent networks are FSA equivalent, RCC is not. The paper presents a theoretical analysis of the RCC architecture in the form of a proof describing a large class of FSA which cannot be realized by RCC. 1 INTRODUCTION Recurrent networks can be considered to be defmed by two components: a network architecture, and a learning rule. The former describes how a network with a given set of weights and topology computes its output values, while the latter describes how the weights (and possibly topology) of the network are updated to fIt a specifIc problem. It is possible to evaluate the computational power of a network architecture by analyzing the types of computations a network could perform assuming appropriate connection weights (and topology).

Similar Docs  Excel Report  more

TitleSimilaritySource
None found