Tensorizing Neural Networks
Novikov, Alexander, Podoprikhin, Dmitrii, Osokin, Anton, Vetrov, Dmitry P.
–Neural Information Processing Systems
Deep neural networks currently demonstrate state-of-the-art performance in several domains.At the same time, models of this class are very demanding in terms of computational resources. In particular, a large amount of memory is required by commonly used fully-connected layers, making it hard to use the models on low-end devices and stopping the further increase of the model size. In this paper we convert the dense weight matrices of the fully-connected layers to the Tensor Train [17] format such that the number of parameters is reduced by a huge factor and at the same time the expressive power of the layer is preserved. In particular, for the Very Deep VGG networks [21] we report the compression factor of the dense weight matrix of a fully-connected layer up to 200000 times leading to the compression factor of the whole network up to 7 times.
Neural Information Processing Systems
Dec-31-2015
- Technology: