Modeling Acoustic Correlations by Factor Analysis
Saul, Lawrence K., Rahim, Mazin G.
–Neural Information Processing Systems
Hidden Markov models (HMMs) for automatic speech recognition rely on high dimensional feature vectors to summarize the shorttime propertiesof speech. Correlations between features can arise when the speech signal is non-stationary or corrupted by noise. We investigate how to model these correlations using factor analysis, a statistical method for dimensionality reduction. Factor analysis uses a small number of parameters to model the covariance structure ofhigh dimensional data. These parameters are estimated by an Expectation-Maximization (EM) algorithm that can be embedded inthe training procedures for HMMs.
Neural Information Processing Systems
Dec-31-1998