Exclusive Feature Learning on Arbitrary Structures via $\ell_{1,2}$-norm

Kong, Deguang, Fujimaki, Ryohei, Liu, Ji, Nie, Feiping, Ding, Chris

Neural Information Processing Systems 

Group LASSO is widely used to enforce the structural sparsity, which achieves the sparsity at the inter-group level. In this paper, we propose a new formulation called "exclusive group LASSO", which brings out sparsity at intragroup level in the context of feature selection. The proposed exclusive group LASSO is applicable on any feature structures, regardless of their overlapping or non-overlapping structures. We provide analysis on the properties of exclusive group LASSO, and propose an effective iteratively re-weighted algorithm to solve the corresponding optimization problem with rigorous convergence analysis. We show applications of exclusive group LASSO for uncorrelated feature selection. Extensive experiments on both synthetic and real-world datasets validate the proposed method.

Similar Docs  Excel Report  more

TitleSimilaritySource
None found