Probabilistic Characterization of Neural Model Computations

Golden, Richard M.

Neural Information Processing Systems 

Learning algorithms for the neural network which search for the "most probable" member of P can then be designed. Statistical tests which decide if the "true" or environmental probability distribution is in P can also be developed. Example applications of the theory to the highly nonlinear back-propagation learning algorithm, and the networks of Hopfield and Anderson are discussed. INTRODUCTION A connectionist system is a network of simple neuron-like computing elements which can store and retrieve information, and most importantly make generalizations. Using terminology suggested by Rumelhart & McClelland 1, the computing elements of a connectionist system are called units, and each unit is associated with a real number indicating its activity level. The activity level of a given unit in the system can also influence the activity level of another unit. The degree of influence between two such units is often characterized by a parameter of the system known as a connection strength. During the information retrievalprocess some subset of the units in the system are activated, and these units in turn activate neighboring units via the inter-unit connection strengths.

Similar Docs  Excel Report  more

TitleSimilaritySource
None found