Teaching Artificial Neural Systems to Drive: Manual Training Techniques for Autonomous Systems
–Neural Information Processing Systems
To demonstrate these methods we have trained an ANS network to drive a vehicle through simulated rreeway traffic. I ntJooducticn Computational systems employing fine grained parallelism are revolutionizing the way we approach a number or long standing problems involving pattern recognition and cognitive processing. Thefield spans a wide variety or computational networks, rrom constructs emulating neural runctions, to more crystalline configurations that resemble systolic arrays. Several titles are used to describe this broad area or research, we use the term artificial neural systems (ANS). Our concern inthis work is the use or ANS ror manually training certain types or autonomous systems where the desired rules of behavior are difficult to rormulate. Artificial neural systems consist of a number or processing elements interconnected in a weighted, user-specified fashion, the interconnection weights acting as memory ror the system. Each processing element calculatE', an output value based on the weighted sum or its inputs. In addition, the input data is correlated with the output or desired output (specified by an instructive agent) in a training rule that is used to adjust the interconnection weights.
Neural Information Processing Systems
Dec-31-1988