Neural Network Analysis of Event Related Potentials and Electroencephalogram Predicts Vigilance

Venturini, Rita, Lytton, William W., Sejnowski, Terrence J.

Neural Information Processing Systems 

Automated monitoring of vigilance in attention intensive tasks such as air traffic control or sonar operation is highly desirable. As the operator monitorsthe instrument, the instrument would monitor the operator, insuring against lapses. We have taken a first step toward this goal by using feedforwardneural networks trained with backpropagation to interpret event related potentials (ERPs) and electroencephalogram (EEG) associated withperiods of high and low vigilance. The accuracy of our system on an ERP data set averaged over 28 minutes was 96%, better than the 83% accuracy obtained using linear discriminant analysis. Practical vigilance monitoring will require prediction over shorter time periods. We were able to average the ERP over as little as 2 minutes and still get 90% correct prediction of a vigilance measure. Additionally, we achieved similarly good performance using segments of EEG power spectrum as short as 56 sec.

Similar Docs  Excel Report  more

TitleSimilaritySource
None found