Interpreting Images by Propagating Bayesian Beliefs

Weiss, Yair

Neural Information Processing Systems 

A central theme of computational vision research has been the realization thatreliable estimation of local scene properties requires propagating measurements across the image. Many authors have therefore suggested solving vision problems using architectures of locally connected units updating their activity in parallel. Unfortunately, theconvergence of traditional relaxation methods on such architectures has proven to be excruciatingly slow and in general they do not guarantee that the stable point will be a global minimum. In this paper we show that an architecture in which Bayesian Beliefs aboutimage properties are propagated between neighboring units yields convergence times which are several orders of magnitude fasterthan traditional methods and avoids local minima. In particular our architecture is non-iterative in the sense of Marr [5]: at every time step, the local estimates at a given location are optimal giventhe information which has already been propagated to that location.

Duplicate Docs Excel Report

Title
None found

Similar Docs  Excel Report  more

TitleSimilaritySource
None found