Full cross-validation and generating learning curves for time-series models - KDnuggets

#artificialintelligence 

Time series analysis is needed almost in any quantitative field and real-life systems that collect data over time, i.e., temporal datasets. Building predictive models on temporal datasets for the future evolution of systems in consideration are usually called forecasting. The validation of such models deviates from the standard holdout method of having random disjoint splits of train, test, and validation sets used in supervised learning. This stems from the fact that time series are ordered, and order induces all sorts of statistical properties that should be retained. For this reason, applying direct cross-validation to time-series model building is not possible and only restricted to out-of-sample (OOS) validation, using the end-tail of a temporal set as a single test set.

Duplicate Docs Excel Report

Title
None found

Similar Docs  Excel Report  more

TitleSimilaritySource
None found