iclr2016:main
Sequential recurrent neural networks (RNNs) over finite alphabets are remarkably effective models of natural language. RNNs now obtain language modeling results that substantially improve over long-standing state-of-the-art baselines, as well as in various conditional language modeling tasks such as machine translation, image caption generation, and dialogue generation. Despite these impressive results, such models are a priori inappropriate models of language. One point of criticism is that language users create and understand new words all the time, challenging the finite vocabulary assumption. A second is that relationships among words are computed in terms of latent nested structures rather than sequential surface order (Chomsky, 1957; Everaert, Huybregts, Chomsky, Berwick, and Bolhuis, 2015).
Mar-25-2016, 15:10:04 GMT
- Technology: