Automatic feature engineering using Generative Adversarial Networks
The purpose of deep learning is to learn a representation of high dimensional and noisy data using a sequence of differentiable functions, i.e., geometric transformations, that can perhaps be used for supervised learning tasks among other tasks. It has had great success in discriminative models while generative models have not fared perhaps quite as well due to the limitations of explicit maximum likelihood estimation (MLE). Adversarial learning as presented in the Generative Adversarial Network (GAN) aims to overcome these problems by using implicit MLE.
Feb-17-2018, 01:45:01 GMT