How do you know if your model is going to work? Part 4: Cross-validation techniques
In this article we conclude our four part series on basic model testing. When fitting and selecting models in a data science project, how do you know that your final model is good? And how sure are you that it's better than the models that you rejected? In this concluding Part 4 of our four part mini-series "How do you know if your model is going to work?" we demonstrate cross-validation techniques. Cross validation techniques attempt to improve statistical efficiency by repeatedly splitting data into train and test and re-performing model fit and model evaluation.
Apr-29-2016, 20:30:54 GMT
- Technology: