Building a Rock Paper Scissors AI
In this article, I'll walk you through my process of building a full stack python Flask artificial intelligence project capable of beating the human user over 60% of the time using a custom scoring system to ensemble six models (naïve logic-based, decision tree, neural network) trained on both game-level and stored historical data in AWS RDS Cloud SQL database. Rock Paper Scissors caught my attention for an AI project because, on the surface, it seems impossible to get an edge in the game. These days, it is easy to assume that a computer can beat you in chess, because it can harness all of its computing power to see all possible outcomes and choose the ones that benefit it. Rock Paper Scissors, on the other hand, is commonly used in place of a coin toss to solve disputes because the winner seems random. My theory though, was that humans can't actually make random decisions, and that if an AI could learn to understand the ways in which humans make their choices over the course of a series of matches, even if the human was trying to behave randomly, then the AI would be able to significantly exceed 33% accuracy in guessing the player's decisions.
May-11-2021, 03:00:05 GMT
- Industry:
- Technology: