Multiclass Learning with Simplex Coding

Neural Information Processing Systems 

In this paper we discuss a novel framework for multiclass learning, defined by a suitable coding/decoding strategy, namely the simplex coding, that allows us to generalize to multiple classes a relaxation approach commonly used in binary classification. In this framework, we develop a relaxation error analysis that avoids constraints on the considered hypotheses class. Moreover, using this setting we derive the first provably consistent regularized method with training/tuning complexity that is independent to the number of classes. We introduce tools from convex analysis that can be used beyond the scope of this paper.