Faster Randomized Infeasible Interior Point Methods for Tall Wide Linear Programs
–Neural Information Processing Systems
Their underlying complexity is dominated by the cost of solving a system of linear equations at each iteration. In this paper, we consider infeasible IPMs for the special case where the number of variables is much larger than the number of constraints (i.e., wide), or vice-versa (i.e., tall) by taking the dual. Using tools from Randomized Linear Algebra, we present a preconditioning technique that, when combined with the Conjugate Gradient iterative solver, provably guarantees that infeasible IPM algorithms (suitably modified to account for the error incurred by the approximate solver), converge to a feasible, approximately optimal solution, without increasing their iteration complexity. Our empirical evaluations verify our theoretical results on both real and synthetic data.
Neural Information Processing Systems
Jan-25-2025, 01:12:50 GMT