Byzantine-tolerant federated Gaussian process regression for streaming data Xu Zhang Zhenyuan Yuan Minghui Zhu Pennsylvania State University

Neural Information Processing Systems 

In this paper, we consider Byzantine-tolerant federated learning for streaming data using Gaussian process regression (GPR). In particular, a cloud and a group of agents aim to collaboratively learn a latent function where some agents are subject to Byzantine attacks. We develop a Byzantine-tolerant federated GPR algorithm, which includes three modules: agent-based local GPR, cloud-based aggregated GPR and agent-based fused GPR. We derive the upper bounds on the prediction error between the mean from the cloud-based aggregated GPR and the target function provided that Byzantine agents are less than one quarter of all the agents. We also characterize the lower and upper bounds of the predictive variance.

Similar Docs  Excel Report  more

TitleSimilaritySource
None found